首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

调整图像大小而不会丢失任何质量

调整图像大小而不会丢失任何质量是一个非常重要的需求,尤其是在网站设计和图片编辑中。为了实现这个目标,可以使用一些图像处理技术来保持图像质量。

一种常用的图像处理技术是“双线性插值”,它可以在调整图像大小时保持图像质量。双线性插值通过在像素之间进行线性插值来生成新的像素值,从而实现平滑的图像缩放。这种方法可以在缩放图像时减少图像的失真,保持图像的清晰度和细节。

另一种常用的图像处理技术是“高质量双线性插值”,它可以进一步提高图像缩放的质量。高质量双线性插值通过对像素周围的多个像素进行插值来生成新的像素值,从而实现更平滑的图像缩放。这种方法可以在缩放图像时减少图像的失真,保持图像的清晰度和细节。

在实际应用中,可以使用一些图像处理库来实现这些技术,例如OpenCV和Pillow等。这些库提供了各种图像处理函数,可以帮助开发人员快速实现图像处理功能。

总之,调整图像大小而不会丢失任何质量是一个重要的需求,可以使用一些图像处理技术来保持图像质量。在实际应用中,可以使用一些图像处理库来实现这些技术,从而实现高质量的图像处理。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

速度提升5.8倍数 | 如果你还在研究MAE或许DailyMAE是你更好的选择,更快更强更节能!!!

自监督学习(SSL)在机器学习中代表了转变性的飞跃,通过利用未标记数据来进行有效的模型训练[3, 4, 20, 22, 31, 32, 33, 34]。这种学习范式得益于大规模数据集,以学习丰富表示用于小样本学习[8]和迁移学习[13, 23]。互联网上大量的未标记数据激发了对深度神经网络模型在大数据集上训练的需求。目前,SSL的成功通常需要在高性能计算集群(HPC)[8, 11, 17]上训练数周。例如,iBOT [47]在16个V100上训练了193小时,用于ViT-S/16。这些计算不包括在开发SSL框架时测试不同假设所需要的时间,这些假设需要在ImageNet-1K[36]的适当规模上进行测试,ImageNet-1K拥有120万个样本,并且需要相当数量的迭代。因此,高效的预训练配方被高度期望以加速SSL算法的研究,例如,超参数调整和新算法的快速验证。为了减少训练时间,一些研究人员在ImageNet-1K[36]的子集上训练他们的模型,例如10%的样本[3]。然而,当模型扩展到大型数据集时,可能会存在性能差距,即在小数据集上表现成熟的模型可能无法处理复杂问题上的多样性。

01

DiffBIR:用生成式扩散先验实现盲图像恢复

图像恢复的目的是从低质量的观测中重建出高质量的图像。典型的图像恢复问题,如图像去噪、去模糊和超分辨率,通常是在受限的环境下定义的,其中退化过程是简单和已知的(例如,高斯噪声和双三次降采样)。为了处理现实世界中退化的图像,盲图像恢复(BIR)成为一个很有前途的方向。BIR的最终目标是在具有一般退化的一般图像上实现真实的图像重建。BIR不仅扩展了经典图像恢复任务的边界,而且具有广泛的实际应用领域。BIR的研究还处于初级阶段。根据问题设置的不同,现有的BIR方法大致可以分为三个研究方向,即盲图像超分辨率(BSR)、零次图像恢复(ZIR)和盲人脸恢复(BFR)。它们都取得了显著的进步,但也有明显的局限性。BSR最初是为了解决现实世界的超分辨率问题而提出的,其中低分辨率图像包含未知的退化。根据最近的BSR调查,最流行的解决方案可能是BSRGAN和Real-ESRGAN。它们将BSR表述为一个有监督的大规模退化过拟合问题。为了模拟真实的退化,分别提出了退化洗牌策略和高阶退化建模,并用对抗性损失来以端到端方式学习重建过程。它们确实消除了一般图像上的大多数退化,但不能生成真实的细节。此外,它们的退化设置仅限于×4或者×8超分辨率,这对于BIR问题来说是不完整的。第二组ZIR是一个新出现的方向。代表有DDRM、DDNM、GDP。它们将强大的扩散模型作为附加先验,因此比基于GAN的方法具有更大的生成能力。通过适当的退化假设,它们可以在经典图像恢复任务中实现令人印象深刻的零次恢复。但是,ZIR的问题设置与BIR不一致。他们的方法只能处理明确定义的退化(线性或非线性),但不能很好地推广到未知的退化。第三类是BFR,主要研究人脸修复。最先进的方法可以参考CodeFormer和VQFR。它们具有与BSR方法相似的求解方法,但在退化模型和生成网络上有所不同。由于图像空间较小,这些方法可以利用VQGAN和Transformer在真实世界的人脸图像上取得令人惊讶的好结果。然而,BFR只是BIR的一个子域。它通常假设输入大小固定,图像空间有限,不能应用于一般图像。由以上分析可知,现有的BIR方法无法在一般图像上实现一般退化的同时实现真实图像的重建。因此需要一种新的BIR方法来克服这些限制。本文提出了DiffBIR,将以往工作的优点整合到一个统一的框架中。具体来说,DiffBIR(1)采用了一种扩展的退化模型,可以推广到现实世界的退化;(2)利用训练良好的Stable Diffusion作为先验来提高生成能力;(3)引入了一个两阶段的求解方法来保证真实性和保真度。本文也做了专门的设计来实现这些策略。首先,为了提高泛化能力,本文将BSR的多种退化类型和BFR的广泛退化范围结合起来,建立了一个更实用的退化模型。这有助于DiffBIR处理各种极端退化情况。其次,为了利用Stable Diffusion,本文引入了一个注入调制子网络-LAControlnet,可以针对特定任务进行优化。与ZIR类似,预训练的Stable Diffusion在微调期间是固定的,以保持其生成能力。第三,为了实现忠实和逼真的图像重建,本文首先应用恢复模块(即SwinIR)来减少大多数退化,然后微调生成模块(即LAControlnet)来生成新的纹理。如果没有这个部分,模型可能会产生过度平滑的结果(删除生成模块)或生成错误的细节(删除恢复模块)。此外,为了满足用户多样化的需求,本文进一步提出了一个可控模块,可以实现第一阶段的恢复结果和第二阶段的生成结果之间的连续过渡效果。这是通过在去噪过程中引入潜在图像引导而无需重新训练来实现的。适用于潜在图像距离的梯度尺度可以调整以权衡真实感和保真度。在使用了上述方法后,DiffBIR在合成和现实数据集上的BSR和BFR任务中都表现出优异的性能。值得注意的是,DiffBIR在一般图像恢复方面实现了很大的性能飞跃,优于现有的BSR和BFR方法(如BSRGAN、Real-ESRGAN、CodeFormer等)。可以观察到这些方法在某些方面的差异。对于复杂的纹理,BSR方法往往会产生不真实的细节,而DiffBIR方法可以产生视觉上令人愉悦的结果。对于语义区域,BSR方法倾向于实现过度平滑的效果,而DiffBIR可以重建语义细节。对于微小的条纹,BSR方法倾向于删除这些细节,而DiffBIR方法仍然可以增强它们的结构。此外,DiffBIR能够处理极端的退化并重新生成逼真而生动的语义内容。这些都表明DiffBIR成功地打破了现有BSR方法的瓶颈。对于盲人脸恢复,DiffBIR在处理一些困难的情况下表现出优势,例如在被其他物体遮挡的面部区域保持良好的保真度,在面部区域之外成功恢复。综上所述,DiffBIR首次能够在统一的框架内获得具有竞争力的BSR和BFR任务性能。广泛而深入的实验证明了DiffBIR优于现有的最先进的BSR和BFR方法。

01

Robust Data Augmentation Generative Adversarial Networkfor Object Detection

基于生成对抗性网络(GAN)的数据扩充用于提高目标检测模型的性能。它包括两个阶段:训练GAN生成器以学习小目标数据集的分布,以及从训练的生成器中采样数据以提高模型性能。在本文中,我们提出了一种流程化的模型,称为鲁棒数据增强GAN(RDAGAN),旨在增强用于目标检测的小型数据集。首先,将干净的图像和包含来自不同域的图像的小数据集输入RDAGAN,然后RDAGAN生成与输入数据集中的图像相似的图像。然后,将图像生成任务划分为两个网络:目标生成网络和图像翻译网络。目标生成网络生成位于输入数据集的边界框内的目标的图像,并且图像转换网络将这些图像与干净的图像合并。 定量实验证实,生成的图像提高了YOLOv5模型的火灾检测性能。对比评价表明,RDAGAN能够保持输入图像的背景信息,定位目标生成位置。此外,消融研究表明,RDAGAN中包括的所有组件和物体都发挥着关键作用。

02

清华 & 阿里 开源 ConvLLaVA | 替代 Vision Transformer,解决图像处理中 Token 过多问题!

大型多模态模型近年来取得了显著进展,在包括图像和视频理解、数字代理开发[53]和机器人技术[24]在内的多个领域表现出卓越性能。要理解和处理广泛任务和复杂场景的必要性凸显了视觉编码器的重要性,而视觉编码器主要是指Vision Transformer。然而,ViT的二次空间复杂性和过多的视觉标记输出限制了其在多样和高分辨率任务中的应用。过多的视觉标记导致大型语言模型的计算负担大幅增加,远远超过了视觉编码器中二次空间复杂度引起的计算成本。这种视觉标记的冗余不仅牺牲了效率,还阻碍了视觉信息的有效提取[31;11]。尽管提出了一系列方法(表1;[31;27;49])来修正ViT的二次空间复杂度,但它们未能解决视觉标记冗余的关键问题[5;28]。

01

实现一个h264编码器前期准备

H264是新一代的编码标准,以高压缩高质量和支持多种网络的流媒体传输著称,在编码方面,我理解的他的理论依据是:参照一段时间内图像的统计结果表明,在相邻几幅图像画面中,一般有差别的像素只有10%以内的点,亮度差值变化不超过2%,而色度差值的变化只有1%以内。所以对于一段变化不大图像画面,我们可以先编码出一个完整的图像帧A,随后的B帧就不编码全部图像,只写入与A帧的差别,这样B帧的大小就只有完整帧的1/10或更小!B帧之后的C帧如果变化不大,我们可以继续以参考B的方式编码C帧,这样循环下去。这段图像我们称为一个序列(序列就是有相同特点的一段数据),当某个图像与之前的图像变化很大,无法参考前面的帧来生成,那我们就结束上一个序列,开始下一段序列,也就是对这个图像生成一个完整帧A1,随后的图像就参考A1生成,只写入与A1的差别内容。

04

FCOS: Fully Convolutional One-Stage Object Detection

我们提出一种全卷积的单阶段目标检测器(FCOS),以逐像素预测的方式解决目标检测问题,类似于语义分割。几乎所有最先进的目标探测器,如RetinaNet、SSD、YOLOv3和Faster R-CNN,都依赖于预定义的锚盒。相比之下,我们提出的探测器FCOS是Anchor Free,以及proposal自由。通过消除预定义的锚盒集合,FCOS完全避免了与锚盒相关的复杂计算,例如在训练过程中计算IoU。更重要的是,我们还避免了所有与锚盒相关的超参数,这些超参数通常对最终检测性能非常敏感。通过唯一的后处理非最大抑制(NMS),使用ResNeXt-64x4d-101的FCOS在单模型和单尺度测试下,AP达到44.7%,超越了以往单阶段检测器。我们首次演示了一个更简单、更灵活的检测框架,从而提高了检测精度。我们希望所提出的FCOS框架可以作为许多其他实例级任务的简单而强大的替代方案。

02
领券