👆点击“博文视点Broadview”,获取更多书讯 数据分析是数学知识、统计知识和分析人员自身专业知识的融合及实际运用,其关键在于挖掘数据潜在的价值,解决实际问题。 分析人员可使用一系列科学研究方法挖掘数据本身的意义及数据之间的关系,进而为实际研究提供有力的数据支撑。 网络问卷调研的兴起让我们可以使用问卷作为背景案例进行阐述,不仅可以将各类分析方法融入问卷研究,还可以将分析思路进行梳理,以“傻瓜”式的文字进行讲解,从而解决实际问题。 在浩如烟海的数据中,不论是科学研究还是商业调查,很大一部分数据是通过调查
调查对象被问到,与传统系统相比,他们看到的大数据中的最大机遇是什么?62% 的人同意实时分析隐藏着当下最大的机遇。
导读:SoftServe是全球领先的技术解决方案提供商,近日发布了自己的Big-Data-Analytics-Report,研究显示62%的大中型公司希望在未来的两年内能将机器学习用于商业分析。今年四月,Vanson Bourne为SoftServe进行了这项研究,调查了多个行业的决策者对大数据技术中的风险、挑战和机遇的看法。 该数据显示,大数据分析技术尽管相对较新,仍然有86%的公司运用了大数据系统。此外,大中型公司认为大数据分析是必须的,并且接受基于大数据分析的新技术。 调查对象被问到,与传统系统
2017 年末,PSF(Python Software Foundation,Python 软件基金会)和 JetBrains 一起进行了一次全球范围内的关于 Python 使用情况的问卷调查,共有来自 153 个国家的 9506 名开发者参与了这次调查,官方也发布了一份调查报告分析。
近20年来,KDnuggets每年都会进行一次调查,来研究数据分析和机器学习领域各个工具的使用情况,已然成为观测这一行业变化与趋势的重要参考依据。
《福布斯观察》分析大数据六大看点 从理念正确到行动正确路还很长 日前,在美国软件服务提供商天睿公司(Teradata)赞助下,《福布斯观察》联合麦肯锡咨询公司发布有关大数据分析状态的调查报告。调查对象是316位来自全球大型企业的高管。 该调查报告的六大看点 一是对大数据的炒作趋弱,大数据开始为企业争取竞争优势。调查显示,约90%的企业对大数据分析投资处于中等或较高水平。约三分之一的企业高管认为该项投资“非常重要”。最重要的是,约三分之二的受访者认为大数据分析举措已经对企业收入产生了可衡量的重大影响。59%
无论是数据分析的新手还是老鸟,都需要对大数据引发的数据分析职业革命做好充分的准备,以下是Information Week根据一次大数据企业应用调查总结的大数据分析职业十大趋势: 一、薪酬持续增长 BI
【摘要】数据分析师是企业的贤内助,可帮企业识别市场机会、控制决策风险,保证企业利益的最大化。< span>< span>< span>< span> 数据分析师是企业的贤内助,可帮企业识别市场机会、控制决策风险,保证企业利益的最大化。在此,数据分析工作越来越受到各界的青睐。被《HR管理世界》评为七大赚钱行业之一,也被视为我国21世纪的黄金职业。在这样的背景下,有些网友想进入到数据分析行业,但对如何规划自己的职业之路比较迷茫。这里我谈谈自己的一些浅显理解,与大家切磋。 这个话题可以
SPSS是一种常用的统计分析软件,主要用于数据管理、数据分析和数据挖掘。它可以帮助用户进行数据清洗、数据整理、数据分析和数据预测等工作。具体来说,SPSS可以进行数据描述统计分析、推论统计分析、因子分析、聚类分析、判别分析、回归分析等多种数据分析和建模操作。它在统计学、社会科学、商业研究等领域广泛应用,可以帮助用户更好地理解和利用数据,从而做出更加科学有效的决策和预测。
与大数据概念知名度和企业热情形成对比的是:大数据正面临全球性的人才荒。企业对新型大数据分析和预测技术人才的热情和需求正在超过传统的商业智能和信息管理人才。 无论是数据分析的新手还是老鸟,都需要对大数
业务数据描述将从统计学角度来分析这指标。利用统计方法,数据分析人员可以通过相应统计模型开展数据分析。数据分析过程包括数据收集,数据处理,数据探索,模型方法应用,分析结果数据展现及形成分析报告。 业务报表是指对业务内容和数据的统计分析图表。统计图表代表了一张图像化的数据,形象地呈现数据。我们常常提到的可视化分析图表一般包括比较类图表,占比类图表,相关类图表和趋势类图表。
Spss软件是一款强大的数据分析工具,广泛用于学术研究、商业决策以及政府机构等领域。本文将介绍Spss软件的基本功能和使用方法,并结合具体的案例分析Spss在数据分析领域中的应用。
即将逝去的2013年,被认为是具有跨时代意义的“大数据元年”。在这一年,数据比以往任何时候都要宝贵,甚至成为可以与石油资源相媲美的新能源,大数据被认为是继信息化和互联网后整个信息革命的又一次高峰。然而,大数据不是口号,需要更多的企业付诸实践,从单调的数据中挖掘出潜在价值。 年初的一项调查曾指出,28%的全球企业和25%的中国企业已经开始进行大数据实践。为了进一步了解中国企业大数据应用的真实情况,IT168近期联合ITPUB、ChinaUnix展开了一项有关大数据应用与趋势的专
有人问我该如何做数据分析。其实数据分析的过程是相对固定的,分析结论的差异性主要是分析者的视点。虽然比较固定,我还是结合了自己写文章的心得,整理出这份ppt。希望对于徘徊在数据分析门口的人有用。整理的过
作者| 王皓月 编辑| 刘雪洁 设计| 苏子馨 责编| 王玥敏 来源|开源社KAIYUANSHE公众号 一年一度的中国开源年度报告再度启动~ 中国开源年度报告由开源社发起。旨在从多种维度,多种方式,多种协作来呈现国内的开源发展情况。今年我们再次启程,结合数据分析手段和调查报告等多种形式,绘制一份2021年中国开源世界的地图。 此刻,正在阅读这篇文章的你,也可以成为这份开源年度报告的贡献者之一,填写开源开发者问卷,告诉开源社你如何参与开源,开源社便能告诉你中国开源的完整现状。 PART ONE 202
通过教育和学习可以培养一些数据分析的技巧和能力,与此同时你还需要通过实践和不断的经验总结持续修炼你的数据分析素养。
从一个群体样本中获取群体的整体特征是许多研究设计和统计方法发展的基础。根据数据收集的算法、调研问题的类型和调研的目标,分析样本调研数据的方法各不相同。这篇文章会简洁明了的分析调研数据过程中的各种问题,同时会说明在一个完整的调研数据分析报告中应该包含什么。这些并不是基本准则而只是一些建议。 调研数据分析的过程应该包括以下步骤: 1、数据验证和探索性分析 2、确认性分析 3、数据解释 4、数据分析报告存档(用于将来的分析) 1数据验证和探索性分析 数据验证主要负责确认调查问卷被正确的完成,并且调研数据具有一致性
从一个群体样本中获取群体的整体特征是许多研究设计和统计方法发展的基础。根据数据收集的算法、调研问题的类型和调研的目标,分析样本调研数据的方法各不相同。这篇文章会简洁明了的分析调研数据过程中的各种问题,同时会说明在一个完整的调研数据分析报告中应该包含什么。这些并不是基本准则而只是一些建议。 调研数据分析的过程应该包括以下步骤: 1、数据验证和探索性分析 2、确认性分析 3、数据解释 4、数据分析报告存档(用于将来的分析) 数据验证和探索性分析 数据验证主要负责确认调查问卷被正确的完成,并且调研数据具有一致
有人问我该如何做数据分析。其实数据分析的过程是相对固定的,分析结论的差异性主要是分析者的视点。虽然比较固定,我还是结合了自己写文章的心得,整理出这份ppt。希望对于徘徊在数据分析门口的人有用。整理的过程,我也根据这个过程做了一个小分析,对公司宝贝进行一个十分简单的分析。如果在阅读文章后,有意见也非常欢迎向我提出。我会尽我所能,一一解答。另外, 如果有比较好的课题来调查分析,也欢迎联系我探讨。我非常乐意做调查分析。
商业数据分析之所以越来越火,是因为小到业务执行、大到企业决策,数据都在持续发挥着价值。很多人凭借着数据分析的优势,在职场上愈加具有核心竞争力。
引言 价值要点 今年年初,普华永道发布了一份针对77国逾1300位CEO的调查。结果显示,在推动数字技术发展、提高组织能力方面,数据挖掘分析占有第二重要的战略地位,仅次于提高客户参与度的移动技术。同时,这些CEO还认为,数据分析对于提供更好的客户体验并提高业务效率来说是一最为重要的一项能力。 需要注意的是,数据本身并不能提供洞识。如果数据分析的结果无法在组织内部分享和公开,那就无法促进业务成果和运营效率的最优化。 如今,我们面对着一道“消费者鸿沟”。没有洞识的数据是毫无价值的。国际数据中心的数据显示,企业平
因为大数据爆发,因此出现了大数据开发、大数据分析这两大主流的工作方向,目前这两个方向是很热门,不少人已经在开始转型往这两个方向发展,相较而言,转向大数据分析的人才更多一点,而同时也有不少人在观望中,这边科多大数据收集了十个为什么要学习大数据分析的十个理由。
“大数据”不再只是一个流行词。弗雷斯特研究公司的研究人员发现,“2016年,近40%的公司在实施大数据技术,并且扩大了采用力度。另有30%的公司计划在未来12个月内采用大数据技术。” 类似的,NewVantage Partners的《2016年大数据高管调查》发现,如今62.5%的公司在生产环境中至少有一个大数据项目,只有5.4%的企业组织没有计划或开展大数据项目。 研究人员表示,采用大数据技术的势头不太可能很快就减慢。IDC主管分析和信息管理的集团副总裁丹·维塞特(Dan Vesset)说:“出现的大量
数据分析报告是对整个数据分析过程的一个总结与呈现。通过报告,把数据分析的起因、过程、结果及建议完整的呈现出来,供决策者参考。 一份好的数据分析报告,首先要有好的分析框架,并且图文并茂,层次清晰,能够让阅读者一目了然;其次需要有明确的结论;最后需要有建议或解决方案。
其实,各行各业都有自己的分析师,比如金融类的就有证券分析师、金融分析师、股票分析师;统计类的就有数据分析师、调查分析师、信息分析师……
大数据时代一个显著特征就是数据可视化的崛起。作为数据最上层的展现环节,数据可视化将技术与艺术完美结合,借助图形化的手段,清晰有效地传达与沟通信息。一方面,数据赋予可视化以意义;另一方面,可视化增加数据的灵性,两者相辅相成,帮助企业从信息中提取知识、从知识中收获价值。 在大数据的推动下,数据可视化的内涵和外延都有了明显的变化,逐渐由单纯的展现演变为报表、分析和展现的综合体,并且落地到云端和移动端。主流的数据可视化既包括R、D3.js、Processing.js等开源的、可编程的工具,也
关于哪种语言更适合数据科学的问题有一个非常热门的争论:R还是Python。答案是两个。人们经常比较R和Python的特性而感到困惑,但我们需要明白,单靠功能本身并不能定义任何语言的适用性。R和Python都有适合数据科学和分析应用程序的特定功能。在某些情况下,一种语言比另一种更优先,但这并不意味着其他语言是无用的。 数据平台 Kaggle 近日发布了 2017 机器学习及数据科学调查报告,这也是 Kaggle 首次进行全行业调查。调查共收到超过 16000 份回复,受访内容包括最受欢迎的编程语言、不同国
PS:用户反馈【反馈渠道(公开,半公开,内部),反馈处理的方法】,用户访谈【访谈目标,访谈对象,访谈清单,访谈技巧,访谈报告】,问卷调查【调查目标,调查对象,问卷设计,问卷投放,结果分析】,可用性测试【测试目的,资源准备,用户招募,测试技巧,测试报告】,后台数据分析【常见数据类型和工具】。用户研究就是不断的研究用户,最终找到需求点的过程。
了解了数据分析的基本概念,主要由统计分析方法(模型)、数据两部分组成。目的是挖掘数据信息。
作为一名市场调查人员,我们需要了解目标用户的行为和偏好,以便我们能够制定相应的市场调查方案。我们可以利用关键词采集工具来了解目标用户的行为和偏好,这些工具可以帮助我们了解用户在搜索引擎上使用哪些关键词和短语,以及他们在社交媒体上的行为和偏好。以下是我总结的十个方面因素:
预料之内的是,Python 并没有完全「吞噬」R 语言的空间,但这项基于 954 个参与者的投票显示,Python 生态系统在今年已经超越了 R 语言,成为了数据分析、数据科学和机器学习的第一大语言。
问卷调查是一种针对目标对象群体的意见调查方式。是一种写好一连串的小问题,搜集被调查者的意见、反应、感受,和对事物的认知等等。当研究者想经过社会调查来探究一个现象的时候,就能用问卷调查法来搜集数据。《贵阳大数据培训中心》 当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统计软件进行处理,在此,我们以SPSS为处理软件,来简要说明一下问卷的处理过程,它的过程大致可分为四个过程:定义变量﹑数据录入﹑统计分析和结果保存。下面将从这四个方面来对问卷的处理做详细的介绍。《贵州大数据培训中心》 第一,定义
翻译|建曙 校对|罗双英 大数据正在多方面改变我们的商业运作(照片提供:Ben Torres/Bloomberg) 大数据现在是个时髦词汇,不管是哪个行业、多大的公司,你在任何一个角落都可以看到它。
人人都是产品经理火了那么多年,现在又开始人人都是数据分析师了!一个公司就那么多坑位,很少能见到几家公司专门配备一个数据分析师,供其他部门使用,现实就是这么骨干地把你打造成一个全方位人才。
大数据文摘作品,欢迎个人转发朋友圈;其他机构、自媒体转载,务必后台留言,申请授权。 编译|丁雪 校对|姚佳灵 席雄芬 尽管本文中提到了在研究中使用的不同方法,许多方法得出了相同的结论。更为深入地洞察顾客及其需求是优先考虑的事,在如何优化销售周期及精简客户服务上获得更精确的信息也是经常要考虑的。最成功的大数据应用案例为我们展示了企业是如何突破限制变得更加关注和响应顾客的需求。 以下给出的是最近的展望与预测综述: wikibon预计大数据市场从2011年到2026年将获得17%年复合增长率,将在2026年达到8
大数据已经进入人力资源领域,而且人力资源的专家们也张开双臂迎接大数据趋势的到来。 事实上,根据2013年的SAS 对1200多家企业的调查,6400个员工人数超过100的组织有望在2018年实现对员工的大数据分析应用。更重要的是,有调查显示,去年,有超过1000家组织在人力资源数据分析的投入位于自家公司投入的前三名。 就人力资源而言,大数据是一个大问题。它使雇主和人力资源做出更明智的业务决策。这里有四个原因来说明为什么人力资源领域要迎接大数据这个趋势: 1.更好地了解。 “大数据”是现在在整个商界都很流行,
大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。这些技术下一步将如何发展?它们之中哪些技术将广为流行?又会诞生哪些新的技术?
用户想要什么我们就给他什么,我们给用户什么用户就想要什么!一句话:我们要知道用户的需求在哪里。怎么知道?通过市场调研还是数据分析?市场调研的手段有很多,一种常规的手段就是问卷调查,而大数据可以说是一种可以替代问卷调查并极大提高调查效果的一种手段。问卷调查的核心思想是抽样调查,而抽样调查的工作方式是通过少量随机样本反映整体数据表现的一种方法。其特点是:选取少量样本,调查目标关键特征。大数据做的第一步是把少量样本变成所有样本,这样就完全排除抽样调查中样本不够随机、不够均匀的问题。大数据做的第二步是把调查的关键特征扩大到所有可能的特征,解决了问卷调查中问题设计等信息获取不全面的问题。从这个角度来说大数据完全可以在市场调研中发挥极大的作用。
大家好,大数据文摘愿意在力所能及的范围内,解答读者问题。本期提问是大三的学生,南瓜灯。也欢迎大家在文末“写评论”处写出你的看法、答复、新问题。如果你的问题有足够的普遍性、代表性,也许下期就能入选。 本期问题 提问人:南瓜灯 问题描述:你好,我是学市场营销专业的学生,现在大三,由于读了大数据时代这本书,对大数据及数据分析非常有兴趣,而且现在大数据分析得到国家支持,同时各行业大数据浪潮也将到来,而且通过数据分析,可以把原本两个完全没有关联的商品通过销售数据的分析,得到两者之间的关联,感觉非常的奇妙,以后也想立志
明确数据分析目的以及确定分析思路,是确保数据分析过程有效进行的先决条件,它可以为数据的收集、处理及分析提供清晰的指引方向。
导读:想知道做数据分析应该使用R还是Python?事实证明,很多好资源可以帮助你了解这两种语言的优缺点。
大数据文摘作品,欢迎个人转发朋友圈;其他机构、自媒体转载,务必后台留言,申请授权。 作者|Vala 校对|Shawn “大数据”和“数据分析”的人本因素 机构和组织一直以来通过分析数据来帮助企业制定战略、经营决策,以及进行风险管理。但今天,情况在发生变化,数据的数量、速度、种类在改变,计算机技术也在改变,而这正是让数以万计的商业应用成为可能的技术平台。 然而,技术仅仅是方程的一部分。企业必须将“数据分析”嵌入到由人类参与的商业决策制定过程中,这才是“数据分析”体现其价值的时刻
T客汇官网:tikehui.com 编译 | 徐婧欣 数据及分析美国零售商供应链的营业毛利润在过去五年里增长了19%。 制造业的增值设计、供应链管理和售后支持三个领域,数据分析在经济上做出了贡献。
选自ACMCSUR 专知编译 参与:左熠昆、Quan 昨天向大家推荐了最新的相关综述论文最新综述文章推荐:自然语言生成、深度学习算法、多媒体大数据分析,今天为大家详细介绍下多媒体大数据分析综述这篇文章。 Samira Pouyanfar, Yimin Yang, Shu-Ching Chen,Mei-Ling Shyu, and S. S. Iyengar. 2018. Multimedia Big Data Analytics: A Survey. ACM Comput. Surv. 51, 1, Art
谢谢主持人,谢教授、各位专家,大家好! 现在我给大家介绍一下数据分析人才的知识结构,事实上这两天的论坛,这两天的演讲,要做数据分析的人他应该具备哪一方面的知识和能力,介绍这方面的专家已经很多了,我把这几天讲的综合起来。 到目前具备数据分析能力的人相当缺乏,这是我从另外一个报道里面统计的,据麦肯锡预估全美需要14到19万名具有专业能力的工作者。数据挖掘结束以后,他如何通过数据挖掘的结果来进行营销和风险控制,这方面的人缺口更多。根据全球数据科学调查报告,显示数据报告性的增长,但是分析增长增长的速度却没有改善,速
今年年初,普华永道发布了一份针对77国逾1300位CEO的调查。结果显示,在推动数字技术发展、提高组织能力方面,数据挖掘分析占有第二重要的战略地位,仅次于提高客户参与度的移动技术。同时,这些CEO还认为,数据分析对于提供更好的客户体验并提高业务效率来说是一最为重要的一项能力。 需要注意的是,数据本身并不能提供洞识。如果数据分析的结果无法在组织内部分享和公开,那就无法促进业务成果和运营效率的最优化。 如今,我们面对着一道“消费者鸿沟”。没有洞识的数据是毫无价值的。国际数据中心的数据显示,企业平均分析到的
选自KDnuggets等 机器之心整理 参与:李泽南、李亚洲、路旭阳 根据 KDnuggets 2017 年最新调查,Python 生态系统已经超过了 R,成为了数据分析、数据科学与机器学习的第一大语言。本文对 KDnuggets 的此项调查结果做了介绍,并补充了一篇文章讲解为何 Python 能成为数据科学领域最受欢迎的语言。 Python vs R:2017 年调查结果 近日,KDnuggets 发起了一项调查,问题是: 你在 2016 年到现在是否使用过 R 语言、Python(以及它们的封装包),或
领取专属 10元无门槛券
手把手带您无忧上云