首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用keras对国产剧评论文本的情感进行预测

RNN即循环神经网络,其主要用途是处理和预测序列数据。在CNN中,神经网络层间采用全连接的方式连接,但层内节点之间却无连接。...RNN为了处理序列数据,层内节点的输出还会重新输入本层,以实现学习历史,预测未来。...Keras对RNN的支持 Keras在layers包的recurrent模块中实现了RNN相关层模型的支持,并在wrapper模块中实现双向RNN的包装器。...下面的示例使用了LSTM模型,通过对豆瓣电视剧评论进行训练,最终使得模型可以对评论的好恶进行预测,或者说简单的情感分析。 语料处理 原始语料来自豆瓣,采集了约100w条豆瓣国产剧评论及对应的评分。...在语料处理中,借助jeiba分词工具进行分词,并去除停词。

1.2K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度学习实战:kaggle竞赛:Keras实现双层LSTM进行风暴预测 python+Keras源码

    本文使用Keras实现双层LSTM进行风暴预测,是一个二分类任务。 模型构建思路 为什么使用 LSTM? LSTM(长短期记忆网络)是一种特殊的 RNN(循环神经网络),它能够有效地处理长期依赖问题。...return_sequences=True 让第一层输出序列以便传递给第二层,而第二层仅返回最后一个时间步的结果来与全连接层(Dense)进行交互。...优点 适用于序列数据:LSTM 结构能够处理并理解时间序列数据中的长期依赖关系,适用于许多任务,如自然语言处理、股票预测、天气预测等。...import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.optimizers...3h = accuracy_score(y_test_3h, y_pred_3h_binary) auc_3h = roc_auc_score(y_test_3h, y_pred_3h) # 打印评估指标

    8610

    使用Keras进行时间序列预测回归问题的LSTM实现

    基本简介 LSTM_learn 使用Keras进行时间序列预测回归问题的LSTM实现 数据 数据来自互联网,这些数据用于预测航空公司的人数,我们使用LSTM网络来解决这个问题 关于此处模型构建...例如在设计 encoder-decoder 模型时,我们可能需要对 cell state 的初始值进行设定。...keras 中设置两种参数的讨论 1.return_sequences=False && return_state=False h = LSTM(X) Keras API 中,return_sequences...reshaped_data = np.array(data).astype('float64') np.random.shuffle(reshaped_data)#(133,11,1) # 对x进行统一归一化...train_x.shape,test_x.shape)) predict_y, test_y = train_model(train_x, train_y, test_x, test_y) #返回原来的对应的预测数值

    6.7K51

    在tensorflow2.2中使用Keras自定义模型的指标度量

    使用Keras和tensorflow2.2可以无缝地为深度神经网络训练添加复杂的指标 Keras对基于DNN的机器学习进行了大量简化,并不断改进。...我们首先创建一个自定义度量类。虽然还有更多的步骤,它们在参考的jupyter笔记本中有所体现,但重要的是实现API并与Keras 训练和测试工作流程的其余部分集成在一起。...工作流中,方法结果将被调用,它将返回一个数字,不需要做任何其他事情。...由于tensorflow 2.2,可以透明地修改每个训练步骤中的工作(例如,在一个小批量中进行的训练),而以前必须编写一个在自定义训练循环中调用的无限函数,并且必须注意用tf.功能启用自动签名。...最后做一个总结:我们只用了一些简单的代码就使用Keras无缝地为深度神经网络训练添加复杂的指标,通过这些代码能够帮助我们在训练的时候更高效的工作。

    2.5K10

    EasyNVR如何自己调用接口进行自定义页面修改?

    当前EasyNVR为5.0.0版本,Web前端为了增加前端的运行效率和减小项目体积,使用的是vue+webpack进行打包,这样为那些需要自定义更改样式的用户增加了难度。 ...image.png EasyNVR的前端其实是通过调用我们流媒体软件接口的demo来实现的界面,为了方便更改,用户可以自主编译前端进行前端修改。...image.png 从浏览器的报错可以看出,是接口调用不成功的问题。EasyNVR默认的HTTP端口是10800。...由于我们使用的是http-server启动的Web页面,而起的服务默认端口是8080,这就和我们调用接口的10800端口产生了冲突。因此需要注意的是,在Web前端代码中调用接口的端口。...对于Web端来说,样式完整的展示和接口的成功调用就已经完成,经过此番调用,有需要的小伙伴可以基于通俗易懂的html、js来进行自定义的页面修改了。

    55830

    EasyNVR如何自己调用接口进行自定义页面修改?

    当前EasyNVR为5.0.0版本,Web前端为了增加前端的运行效率和减小项目体积,使用的是vue+webpack进行打包,这样为那些需要自定义更改样式的用户增加了难度。...EasyNVR的前端其实是通过调用我们流媒体软件接口的demo来实现的界面,为了方便更改,用户可以自主编译前端进行前端修改。...从浏览器的报错可以看出,是接口调用不成功的问题。EasyNVR默认的HTTP端口是10800。...由于我们使用的是http-server启动的Web页面,而起的服务默认端口是8080,这就和我们调用接口的10800端口产生了冲突。因此需要注意的是,在Web前端代码中调用接口的端口。...对于Web端来说,样式完整的展示和接口的成功调用就已经完成,经过此番调用,有需要的小伙伴可以基于通俗易懂的html、js来进行自定义的页面修改了。

    38720

    使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测

    在本文中,您将发现如何使用Keras深度学习库在Python中开发LSTM网络,以解决时间序列预测问题。 完成本教程后,您将知道如何针对自己的时间序列预测问题实现和开发LSTM网络。...假设安装了Keras深度学习库。 在进行任何操作之前,最好先设置随机数种子,以确保我们的结果可重复。...我们可以更好地控制何时在Keras中清除LSTM网络的内部状态。这意味着它可以在整个训练序列中建立状态,甚至在需要进行预测时也可以保持该状态。...随后,在评估模型和进行预测时,必须使用相同的批次大小。...概要 在本文中,您发现了如何使用Keras深度学习网络开发LSTM递归神经网络,在Python中进行时间序列预测。 ---- ?

    3.4K10

    使用Keras在训练深度学习模型时监控性能指标

    在本教程中,我会告诉你如何在使用Keras进行深度学习时添加内置指标以及自定义指标并监控这些指标。...通过实例掌握Keras自定义指标的方法。 事不宜迟,让我们开始吧。...为回归问题提供的性能评估指标 Keras为分类问题提供的性能评估指标 Keras中的自定义性能评估指标 Keras指标 Keras允许你在训练模型期间输出要监控的指标。...Keras中的自定义性能评估指标 除了官方提供的标准性能评估指标之外,你还可以自定义自己的性能评估指标,然后再调用compile()函数时在metrics参数中指定函数名。...[自定义性能评估指标——均方误差的折线图] 你的自定义性能评估函数必须在Keras的内部数据结构上进行操作而不能直接在原始的数据进行操作,具体的操作方法取决于你使用的后端(如果使用TensorFlow,

    8K100

    深度学习笔记(一) tf.keras 构建lstm神经网络进行时间序列预测

    目的:学会使用tf.keras构建lstm神经网络进行一个基本的时间序列数据预测(入门版),基于官方案例-预测天气数据进行学习。   .../article/details/106035640 主要步骤分为:   1、确定使用目的;2、读取数据;3、数据预处理;4、构造样本数据和测试数据;5、创建模型;6、训练模型;7、展示训练结果;8、进行预测...集构建一个天气预测模型 。   由于气候的变化在一个小时内并不明显,所以考虑使用这个数据建立一个温度预测模型,使用前720分钟(120个小时)数据对72分钟后(12个小时后)的温度时点进行预测。...8、进行预测 从测试数据集中再选出5个节点进行预测查看。预测值和实际值存在有点误差。...总结: 对keras创建Lstm神经网络的流程大致有了一个了解,下来需要进一步了解具体的原理进行深入的学习,这样的模型参数设置,和结果的好坏才有更准确的把握。

    2.9K31

    keras系列︱迁移学习:利用InceptionV3进行fine-tuning及预测、完美案例(五)

    之前在博客《keras系列︱图像多分类训练与利用bottleneck features进行微调(三)》一直在倒腾VGG16的fine-tuning,然后因为其中的Flatten层一直没有真的实现最后一个模块的...Sequential式、Model式)解读(二) 3、keras系列︱图像多分类训练与利用bottleneck features进行微调(三) 4、keras系列︱人脸表情分类与识别:opencv人脸检测...+Keras情绪分类(四) 5、keras系列︱迁移学习:利用InceptionV3进行fine-tuning及预测、完整案例(五) 一、定义函数以及加载模块 其中的get_nb_files函数为得到文件数量...本文实践的数据是我上次博客的数据《keras系列︱图像多分类训练与利用bottleneck features进行微调(三)》的第二节。 ?...= (229, 229) #fixed size for InceptionV3 architecture # 预测函数 # 输入:model,图片,目标尺寸 # 输出:预测predict def

    3.3K101

    干货 | TensorFlow 2.0 模型:Keras 训练流程及自定义组件

    本文介绍以下内容: 使用 Keras 内置的 API 快速建立和训练模型,几行代码创建和训练一个模型不是梦; 自定义 Keras 中的层、损失函数和评估指标,创建更加个性化的模型。...中的其他层一样,调用我们自定义的层 LinearLayer: 1class LinearModel(tf.keras.Model): 2 def __init__(self): 3...自定义损失函数需要继承 tf.keras.losses.Loss 类,重写 call 方法即可,输入真实值 y_true 和模型预测值 y_pred ,输出模型预测值和真实值之间通过自定义的损失函数计算出的损失值...return tf.reduce_mean(tf.square(y_pred - y_true)) 自定义评估指标需要继承 tf.keras.metrics.Metric 类,并重写 __init__、...A:可以参考示例,该示例使用了 Keras 和 LSTM 在天气数据集上进行了时间序列预测。

    3.3K00

    使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测|附代码数据

    我们可以更好地控制何时在Keras中清除LSTM网络的内部状态。这意味着它可以在整个训练序列中建立状态,甚至在需要进行预测时也可以保持该状态。...本文选自《使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测》。...|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类...Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告R语言深度学习:用keras神经网络回归模型预测时间序列数据...LSTM递归神经网络进行时间序列预测python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类

    2.2K20

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第12章 使用TensorFlow自定义模型并训练

    笔记:Keras能无缝处理变量持久化。 当用简单函数定义指标时,Keras会在每个批次自动调用它,还能跟踪平均值,就和刚才的手工处理一模一样。...因此,HuberMetric类的唯一好处是threshold可以进行保存。当然,一些指标,比如准确率,不能简单的平均化;对于这些例子,只能实现一个流式指标。...因为还有些内容需要掌握:首先,如何基于模型内部定义损失或指标,第二,如何搭建自定义训练循环。 基于模型内部的损失和指标 前面的自定义损失和指标都是基于标签和预测(或者还有样本权重)。...另外,当你写的自定义损失函数、自定义指标、自定义层或任何其它自定义函数,并在Keras模型中使用的,Keras都自动将其转换成了TF函数,不用使用tf.function()。...可以通过函数或创建keras.losses.Loss的子类来自定义损失函数。两种方法各在什么时候使用? 相似的,自定义指标可以通过定义函数或创建keras.metrics.Metric的子类。

    5.3K30

    用Keras从零开始6步骤训练神经网络

    高度灵活:用户可以使用Keras的函数式API构建任意结构的神经网络,如多输入多输出结构,残差网络,Inception网络等。通过自定义层和自定义模型,用户可以实现高度定制化的功能。...模型由层layer组成,keras中有许多已经定义好的层,用户可以使用backend函数定义Lambda匿名层,此外用户也可以继承Layer层基类构建自定义层。...如果需要使用tensorboard来对模型结构图及训练过程进行可视化,可以调用tensorboard回调函数。...然后可以用matplotlib将结果可视化,也可以利用回调函数在tensorboard中进行可视化。如果需要自定义评估指标,可以利用backend接口进行编写。...5,使用模型 一般情况下使用模型的predict方法进行预测,当数据集较大时,使用predict_generator方法进行预测。

    1.4K20

    盘一盘 Python 系列 10 - Keras (上)

    拟合模型:和 Scikit-Learn 里的估计器类似,但可以额外设定 epoch 数量、是否包含验证集、设定调用函数里面的指标,等等。 评估模型:和 Scikit-Learn 里的预测器类似。...然后损失函数将这些预测值输出,并与目标进行比较,得到损失值,用于衡量网络预测值与预期结果的匹配程度。优化器使用这个损失值来更新网络的权重。...指标 metrics 指标和损失函数一样,都可以通过用名称和实例化对象来调用,在本例中的指标是精度,那么可写成 名称:metrics = ['acc'] 对象:metrics = [metrics.categorical_accuracy...除了 Keras 自带指标,我们还可以自定指标,下列的 mean_pred 就是自定义指标(该指标计算预测的平均值)。...1.6 预测模型 Keras 预测模型和 Scikit-Learn 里一样,都用是 model.predict()。

    1.8K10

    Deep learning with Python 学习笔记(9)

    -- 在训练结束时被调用 这些方法被调用时都有一个 logs 参数,这个参数是一个字典,里面包含前一个批量、前一个轮次或前一次训练的信息,即训练指标和验证指标等。...此外,回调函数还可以访问下列属性 self.model:调用回调函数的模型实例 self.validation_data:传入 fit 作为验证数据的值 自定义回调函数的简单示例,它可以在每轮结束后将模型每层的激活保存到硬盘...另一个叫作 Hyperas 的库将 Hyperopt 与 Keras 模型集成在一起 模型集成 集成是指将一系列不同模型的预测结果汇集到一起,从而得到更好的预测结果。...将他们的观点汇集在一起,你可以得到对数据更加准确的描述 集成最简单的方法就是就不同模型的结果进行平均,以平均值作为预测的结果。但是这种方法假设了所使用的分类器的性能都差不多好。...如果其中一个模型性能比其他的差很多,那么最终预测结果可能不如这一组中的最佳模型好 而更加适用的方法是对各个模型的结果进行加权平均,其权重从验证数据上学习得到。

    63210

    PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子|附代码数据

    一个简单的编码器-解码器LSTM神经网络应用于时间序列预测问题:预测天然气价格,预测范围为 10 天。“进入”时间步长也设置为 10 天。) 只需要 10 天来推断接下来的 10 天。...数据集是天然气价格 ( 查看文末了解数据获取方式 ) ,具有以下特征: 日期(从 1997 年到 2020 年)- 为 每天数据 以元计的天然气价格 相关视频:LSTM神经网络架构和工作原理及其在Python中的预测应用...ales, fill_value=np.nan) # 检查 print(d_tret.dtypes) df_aget.head(10) 处理缺失的日期 # 数据归纳(使用 "向前填充"--根据之前的值进行填充...# 标准化训练数据[0, 1] sclr = prcsing.Maxcaer((0,1)) 准备训练数据集 时间步数 = 1 时间步数 = nsteout小时数(预测范围) 在这里,我们将数据集从 [...注意:模型已经“看到”或训练了这些样本,但我们希望确保它与预测一致。

    34141
    领券