首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

调用mmap回调时是否保留了mmap_sem?

调用mmap回调时是否保留了mmap_sem取决于具体的实现。mmap_sem是Linux内核中用于对内存映射操作进行同步的信号量。它的作用是保护对虚拟内存区域的并发访问,以防止多个进程同时修改同一内存区域的映射关系。

在一些实现中,调用mmap回调时会保留mmap_sem,以确保在回调期间不会发生竞争条件。这样可以防止其他进程或线程在回调期间修改映射关系,从而保证回调的正确执行。

然而,并不是所有的实现都会保留mmap_sem。具体是否保留mmap_sem取决于内核版本、操作系统配置以及应用程序的需求。在某些情况下,为了提高性能或避免死锁等问题,可能会选择在回调期间释放mmap_sem。

总之,调用mmap回调时是否保留mmap_sem是一个实现相关的问题,需要根据具体情况来确定。在编写应用程序时,应该遵循操作系统的规范和最佳实践,并根据具体需求进行适当的同步操作,以确保内存映射的正确性和安全性。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云云服务器(ECS):https://cloud.tencent.com/product/cvm
  • 腾讯云云原生容器服务(TKE):https://cloud.tencent.com/product/tke
  • 腾讯云数据库(TencentDB):https://cloud.tencent.com/product/cdb
  • 腾讯云人工智能(AI):https://cloud.tencent.com/product/ai
  • 腾讯云物联网(IoT):https://cloud.tencent.com/product/iotexplorer
  • 腾讯云移动开发(移动推送、移动分析等):https://cloud.tencent.com/product/mobile
  • 腾讯云对象存储(COS):https://cloud.tencent.com/product/cos
  • 腾讯云区块链(BCS):https://cloud.tencent.com/product/bcs
  • 腾讯云元宇宙(Tencent XR):https://cloud.tencent.com/product/xr
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • [Linux][mm]TLB shootdown和读取smaps对性能的影响 ​

    作者遇到了业务的一个性能抖动问题,在这里介绍一下它的原因和解决办法。 分析 1,page fault 在Linux上,进程分配到的内存是虚拟内存,经过内核的页表管理,会把虚拟内存映射成物理内存。 a,在第一次访问内存的时候,会触发page fault,内核会给进程分配好内存,进程继续执行。 b,内核进行内存回收,可能会把进程的部分内存进行回收,swap到磁盘上,下次访问到再换回来。当然,这个在实际业务上未必会启用swap以防止性能下降。 c,进程自己判断,认为部分内存段时间内不会使用,会尝试把它归还给内核。它的好处是不需要修改进程的虚拟地址空间,只是把内存页面(page)归还给内核,下一次访问到的时候,会因为page fault而重新分配物理内存。 另外需要注意的时候,处理page fault的过程中,需要持有进程的内存的锁(current->mm->mmap_sem)。 2,TLB shootdown 例如某服务器有40CPU,那么就意味着可以同时运行40个task。 例如某业务有30个线程,且这30个线程都很忙,并行执行在30个CPU上。 因为30个线程共享地址空间,它们使用的是相同的页表(page table)。所以在运行这30个线程的CPU上,会加载相同的页表。 当代CPU为了加速TLB查找的速度,会使用cache,也就是说会把对应的页表项(page table entry)加载到TLB cache中。 在运行的某一个时刻,某1个线程执行了上述的page fault的case 3,也就是执行了系统调用int madvise(void *addr, size_t length, MADV_DONTNEED),想要释放1个page(4K大小),除了需要修改页表释放该page外,还需要确保CPU的TLB cache中也是没有该page的PTE的。因为如果TLB cache还有该PTE,那么CPU访问这个page就不会出错,而这个page已经被释放并分配给其他进程使用的话,就会造成安全问题。 在多核场景下,这个问题就变得更加复杂了。除了运行madvise的线程之后,还需要确保另外的29个线程运行的CPU的TLB cache也是没有该PTE的。为了实现这种效果,需要当前的CPU通知另外的29个CPU,执行clflush或者重新加载cr3。这个通知的过程需要发送IPI(inter processor interrup)。 发送IPI的这个过程,在x86上的体现就是需要CPU执行wrmsr指令,对应的操作是触发ICR。了解虚拟化的朋友应该知道,wrmsr这条指令在虚拟机上需要经过Hypervisor处理,性能更低一些。 除此之外,在执行madvise的过程中,还需要持有当前进程的内存的锁(current->mm->mmap_sem),而且这个锁的粒度比较大。 而jemalloc库,默认情况下,则会释放过期的内存,调用madvise(void *addr, size_t length, MADV_DONTNEED)。 3,smaps/smaps_rollup cat /proc/PID/smaps,可以查看进程的每一段VMA信息。

    02

    brk实现

    在32位Linux内核中,每个用户进程拥有3GB的虚拟空间。内核如何为用户空间来划分这3GB的虚拟空间呢?用户进程的可执行文件由代码段和数据段组成,数据段包括所有静态分配的数据空间,例如全局变量和静态局部变量等。这些空间在可执行文件装载时,内核就为其分配好这些空间,包括虚拟地址和物理页面,并建立好两者的映射关系。如图2.15所示,用户进程的用户栈从3GB虚拟空间的顶部开始,由顶向下延伸,而brk分配的空间是从数据段的顶部end_data到用户栈的底部。所以动态分配空间是从进程的end_data开始,每次分配一块空间,就把这个边界往上推进一段,同时内核和进程都会记录当前边界的位置。

    02

    futex函数_UNIX/LINUX

    大家好,又见面了,我是你们的朋友全栈君。 引子 在编译2.6内核的时候,你会在编译选项中看到[*] Enable futex support这一项,上网查,有的资料会告诉你”不选这个内核不一定能正确的运行使用glibc的程序”,那futex是什么?和glibc又有什么关系呢? 1. 什么是Futex Futex 是Fast Userspace muTexes的缩写,由Hubertus Franke, Matthew Kirkwood, Ingo Molnar and Rusty Russell共同设计完成。几位都是linux领域的专家,其中可能Ingo Molnar大家更熟悉一些,毕竟是O(1)调度器和CFS的实现者。 Futex按英文翻译过来就是快速用户空间互斥体。其设计思想其实 不难理解,在传统的Unix系统中,System V IPC(inter process communication),如 semaphores, msgqueues, sockets还有文件锁机制(flock())等进程间同步机制都是对一个内核对象操作来完成的,这个内核对象对要同步的进程都是可见的,其提供了共享 的状态信息和原子操作。当进程间要同步的时候必须要通过系统调用(如semop())在内核中完成。可是经研究发现,很多同步是无竞争的,即某个进程进入 互斥区,到再从某个互斥区出来这段时间,常常是没有进程也要进这个互斥区或者请求同一同步变量的。但是在这种情况下,这个进程也要陷入内核去看看有没有人 和它竞争,退出的时侯还要陷入内核去看看有没有进程等待在同一同步变量上。这些不必要的系统调用(或者说内核陷入)造成了大量的性能开销。为了解决这个问 题,Futex就应运而生,Futex是一种用户态和内核态混合的同步机制。首先,同步的进程间通过mmap共享一段内存,futex变量就位于这段共享 的内存中且操作是原子的,当进程尝试进入互斥区或者退出互斥区的时候,先去查看共享内存中的futex变量,如果没有竞争发生,则只修改futex,而不 用再执行系统调用了。当通过访问futex变量告诉进程有竞争发生,则还是得执行系统调用去完成相应的处理(wait 或者 wake up)。简单的说,futex就是通过在用户态的检查,(motivation)如果了解到没有竞争就不用陷入内核了,大大提高了low-contention时候的效率。 Linux从2.5.7开始支持Futex。 2. Futex系统调用 Futex是一种用户态和内核态混合机制,所以需要两个部分合作完成,linux上提供了sys_futex系统调用,对进程竞争情况下的同步处理提供支持。 其原型和系统调用号为 #include <linux/futex.h> #include <sys/time.h> int futex (int *uaddr, int op, int val, const struct timespec *timeout,int *uaddr2, int val3); #define __NR_futex 240 虽然参数有点长,其实常用的就是前面三个,后面的timeout大家都能理解,其他的也常被ignore。 uaddr就是用户态下共享内存的地址,里面存放的是一个对齐的整型计数器。 op存放着操作类型。定义的有5中,这里我简单的介绍一下两种,剩下的感兴趣的自己去man futex FUTEX_WAIT: 原子性的检查uaddr中计数器的值是否为val,如果是则让进程休眠,直到FUTEX_WAKE或者超时(time-out)。也就是把进程挂到uaddr相对应的等待队列上去。 FUTEX_WAKE: 最多唤醒val个等待在uaddr上进程。 可见FUTEX_WAIT和FUTEX_WAKE只是用来挂起或者唤醒进程,当然这部分工作也只能在内核态下完成。有些人尝试着直接使用futex系统调 用来实现进程同步,并寄希望获得futex的性能优势,这是有问题的。应该区分futex同步机制和futex系统调用。futex同步机制还包括用户态 下的操作,我们将在下节提到。 3. Futex同步机制 所有的futex同步操作都应该从用户空间开始,首先创建一个futex同步变量,也就是位于共享内存的一个整型计数器。 当 进程尝试持有锁或者要进入互斥区的时候,对futex执行”down”操作,即原子性的给futex同步变量减1。如果同步变量变为0,则没有竞争发生, 进程照常执行。如果同步变量是个负数,则意味着有竞争发生,需要调用futex系统调用的futex_wait操作休眠当前进程。 当进程释放锁或 者要离开互斥区的时候,对futex进行”up”操作,

    02
    领券