首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    谱聚类(spectral clustering)

    给你博客园上若干个博客,让你将它们分成K类,你会怎样做?想必有很多方法,本文要介绍的是其中的一种——谱聚类。      聚类的直观解释是根据样本间相似度,将它们分成不同组。谱聚类的思想是将样本看作顶点,样本间的相似度看作带权的边,从而将聚类问题转为图分割问题:找到一种图分割的方法使得连接不同组的边的权重尽可能低(这意味着组间相似度要尽可能低),组内的边的权重尽可能高(这意味着组内相似度要尽可能高)。将上面的例子代入就是将每一个博客当作图上的一个顶点,然后根据相似度将这些顶点连起来,最后进行分割。分割后还连在一起的顶点就是同一类了。更具体的例子如下图所示:

    02

    【V课堂】R语言十八讲(十三)—聚类模型

    聚类分析是一种原理简单、应用广泛的数据挖掘技术。顾名思义,聚类分析即是把若干事物按照某种标准归为几个类别,其中较为相近的聚为一类,不那么相近的聚于不同类。聚类分析在客户分类、文本分类、基因识别、空间数据处理、卫星图片分析、医疗图像自动检测等领域有着广泛的应用;而聚类分析本身的研究也是一个蓬勃发展的领域,数据分析、统计学、机器学习、空间数据库技术、生物学和市场学也推动了聚类分析研究的进展。聚类分析已经成为数据分析研究中的一个热点。 1 原理 聚类算法种类繁多,且其中绝大多数可以用R实现。下面将选取普及性最广、

    07

    Nature子刊 | 使用非侵入式超高密度记录方法绘制大脑中央沟图谱

    本文评估了使用带有镀金电极点的柔性印刷电路板(PCB)的超高密度脑电图(uHD EEG)系统。电极间距离为8.6mm,电极直径为5.9mm,电极密度高于市场上市售的脑电图系统。图1a描绘了标准化的电极定位系统。10-20系统中的21个标准位置是深灰色的。图1a还包括另外两个系统:10-10系统(标记为填充的浅灰色圆圈)和扩展的10-10系统(标记为浅灰色圆圈)。本文中的uHD脑电图系统由图1a中的小黑圈和图1b,c中的填充小黑圆圈表示。使用MATLAB(R2019b)的EEGLAB工具箱对收集到的数据进行预处理。我们采用平均去除法进行基线去除,并对0.5~40Hz的数据进行时域变换。用标记“1”分为“试验×通道×时间样本”格式。

    01
    领券