首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

谷歌BigQuery - parse_timestamp

在 Google BigQuery 中,PARSE_TIMESTAMP 函数用于将字符串解析为 TIMESTAMP 数据类型。这个函数非常有用,特别是在处理包含日期和时间信息的字符串时。

语法

代码语言:javascript
复制
PARSE_TIMESTAMP(format_string, timestamp_string)
  • format_string:指定输入字符串的格式。格式字符串使用与 strftime 函数相同的格式说明符。
  • timestamp_string:要解析的时间戳字符串。

常用格式说明符

以下是一些常用的格式说明符:

  • %Y:四位数的年份(例如:2023)
  • %m:两位数的月份(01-12)
  • %d:两位数的日期(01-31)
  • %H:两位数的小时(00-23)
  • %M:两位数的分钟(00-59)
  • %S:两位数的秒(00-59)

示例

假设你有一个包含日期和时间的字符串,并且你想将其解析为 TIMESTAMP 数据类型。

示例 1:基本用法

代码语言:javascript
复制
SELECT PARSE_TIMESTAMP('%Y-%m-%d %H:%M:%S', '2023-10-05 14:30:00') AS parsed_timestamp;

结果:

parsed_timestamp

2023-10-05 14:30:00 UTC

示例 2:带有时区信息

如果你的时间戳字符串包含时区信息,你可以使用 %Ez 格式说明符。

代码语言:javascript
复制
SELECT PARSE_TIMESTAMP('%Y-%m-%d %H:%M:%S%Ez', '2023-10-05 14:30:00+00:00') AS parsed_timestamp;

结果:

parsed_timestamp

2023-10-05 14:30:00 UTC

示例 3:不同的日期格式

代码语言:javascript
复制
SELECT PARSE_TIMESTAMP('%d/%m/%Y %H:%M:%S', '05/10/2023 14:30:00') AS parsed_timestamp;

结果:

parsed_timestamp

2023-10-05 14:30:00 UTC

处理错误

如果输入字符串的格式与指定的格式字符串不匹配,PARSE_TIMESTAMP 函数将返回 NULL

代码语言:javascript
复制
SELECT PARSE_TIMESTAMP('%Y-%m-%d %H:%M:%S', '2023/10/05 14:30:00') AS parsed_timestamp;

结果:

parsed_timestamp

NULL

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 深入浅出为你解析关于大数据的所有事情

    大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。 现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。 通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。 大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。 以前的商业智能和数据仓库的举措是失败的,因为他们需要花费数月甚至是数年的时间才能让股东得

    05

    Mesa——谷歌揭开跨中心超速数据仓库的神秘面纱

    点击标题下「大数据文摘」可快捷关注 大数据文摘翻译 翻译/于丽君 校对/瑾儿小浣熊 转载请保留 摘要:谷歌近期发表了一篇关于最新大数据系统的论文,是关于Mesa这一全球部署的数据仓库,它可以在数分钟内提取上百万行,甚至可以在一个数据中心发生故障时依然运作。 谷歌正在为其一项令人兴奋的产品揭开面纱,它可能成为数据库工程史上的又一个壮举,这就是一个名为Mesa的数据仓库系统,它可以处理几乎实时的数据,并且即使一整个数据中心不幸脱机也可以发挥它的性能。谷歌工程师们正在为下个月将在中国举行的盛大的数据库会议准备展示

    06

    20亿条记录的MySQL大表迁移实战

    我们的一个客户遇到了一个 MySQL 问题,他们有一张大表,这张表有 20 多亿条记录,而且还在不断增加。如果不更换基础设施,就有磁盘空间被耗尽的风险,最终可能会破坏整个应用程序。而且,这么大的表还存在其他问题:糟糕的查询性能、糟糕的模式设计,因为记录太多而找不到简单的方法来进行数据分析。我们希望有这么一个解决方案,既能解决这些问题,又不需要引入高成本的维护时间窗口,导致应用程序无法运行以及客户无法使用系统。在这篇文章中,我将介绍我们的解决方案,但我还想提醒一下,这并不是一个建议:不同的情况需要不同的解决方案,不过也许有人可以从我们的解决方案中得到一些有价值的见解。

    01

    大数据已死?谷歌十年老兵吐槽:收起 PPT 吧!数据大小不重要,能用起来才重要

    作者 | Jordan Tigani 译者 | 红泥 策划 | 李冬梅 随着云计算时代的发展,大数据实际已经不复存在。在真实业务中,我们对大数据更多的是存储而非真实使用,大量数据现在已经变成了一种负债,我们在选择保存或者删除数据时,需要充分考虑可获得价值及各种成本因素。 十多年来,人们一直很难从数据中获得有价值的参考信息,而这被归咎于数据规模。“对于你的小系统而言,你的数据量太庞大了。”而解决方案往往是购买一些可以处理大规模数据的新机器或系统。但是,当购买了新的设备并完成迁移后,人们发现仍然难以处

    03

    使用Kafka,如何成功迁移SQL数据库中超过20亿条记录?

    使用 Kafka,如何成功迁移 SQL 数据库中超过 20 亿条记录?我们的一个客户遇到了一个 MySQL 问题,他们有一张大表,这张表有 20 多亿条记录,而且还在不断增加。如果不更换基础设施,就有磁盘空间被耗尽的风险,最终可能会破坏整个应用程序。而且,这么大的表还存在其他问题:糟糕的查询性能、糟糕的模式设计,因为记录太多而找不到简单的方法来进行数据分析。我们希望有这么一个解决方案,既能解决这些问题,又不需要引入高成本的维护时间窗口,导致应用程序无法运行以及客户无法使用系统。在这篇文章中,我将介绍我们的解决方案,但我还想提醒一下,这并不是一个建议:不同的情况需要不同的解决方案,不过也许有人可以从我们的解决方案中得到一些有价值的见解。

    02
    领券