利用计算机图像识别、地址库、合卷积神经网提升手写运单机器有效识别率和准确率,大幅度地减少人工输单的工作量和差错可能。
父老们,乡亲们!你知道人脸、商品、车辆识别,以图搜图乃至自动驾驶,背后的技术是什么嘛?
近期开赛的亚马逊云科技【AI For Good - 2022 遥感光学影像目标检测挑战赛】中,动辄超过10000 x 10000的卫星遥感图像让许多选手感到头疼。同时遥感影像中目标尺寸差别大、角度各异也导致常见的CV框架难以实现快速精准的目标识别。
一般情况下,遥感目标检测中,遥感图像的图片尺寸都会很大,且图像中元素极为复杂,近期开赛的亚马逊云科技【AI For Good - 2022 遥感光学影像目标检测挑战赛】也不例外,动辄超过10000 x 10000的卫星遥感图像让许多选手感到头疼。同时遥感影像中目标尺寸差别大、小而密集、角度各异也导致常见的CV框架难以实现快速精准的目标识别。所以,如何实现遥感图像等超大尺寸图像快速识别? 目前比较成熟的卫星图像识别算法并不少,但大多依托于强大的计算资源,为了用有限的计算资源实现大尺寸图像识别,我们找到了一个
艺术创作辅助:艺术家使用AI绘画工具来创作和实验,例如利用风格迁移生成不同艺术风格的作品。
位来 发自 凹非寺 量子位 编辑 | 公众号 QbitAI 图像识别技术是人工智能研究的一个重要分支,也是人们日常生活、工作中应用最广泛的AI技术之一。如车辆识别、人脸识别、体态识别等技术,广泛应用于智慧城市、交通、零售、文娱等领域。 图像识别也是机器人、无人驾驶等技术的重要基础,未来将具有更加广泛的应用领域。 但对于大部分AI开发者来说,图像识别从算法研究、模型训练到规模化的提供服务,所需卷入的资源和处理的流程非常之多。并且如何保证数据质量、提高推理速度、提升识别精度等都面临很多挑战。 那么,开发者如何才
[1]吴恩达老师课程原地址: https://mooc.study.163.com/smartSpec/detail/1001319001.htm
提高交通安全、改善医疗服务、提升环境效益——专家认为大数据技术在高级图像分析和图像识别领域潜力无限。 挪威卑尔根Uni Research公司的科学家Eirik Thorsnes表示:“计算机的高级图像
大家好,前几天的时候写过一篇滴滴和自动驾驶的文章,大家反响很好。有些小伙伴在后台给我留言说让我详细讲讲自动驾驶,倒不是我不想讲,而是确实没干过。好在我虽然没吃过猪肉,但之前听过很多大佬的内部分享,也算是看过猪跑了,就把我了解到的结合一些我自己的思考分享给大家。
在道路上放置一些简单的贴纸就能欺骗特斯拉Model S进入反向车道?游戏手柄就能操控车辆行驶?图像干扰能自动启动雨刷?
作者:宋天龙 链接:https://www.zhihu.com/question/63383992/answer/222718972 来源:知乎
本文介绍了计算机视觉中的三大基本任务:图像分类、目标检测和分割。这些任务在计算机视觉领域中具有广泛的应用,包括图像识别、智能监控、自动驾驶等。本文还介绍了视觉目标跟踪等任务的应用,以及这些任务在无人驾驶等领域的应用。
物体识别是计算机视觉领域中的一项基础研究,它的任务是识别出图像中有什么物体,并报告出这个物体在图像表示的场景中的位置和方向。目前物体识别方法可以归为两类:基于模型的或者基于上下文识别的方法,二维物体识别或者三维物体识别方法。对于物体识别方法的评价标准,Grimson 总结出了大多数研究者主要认可的 4 个标准:健壮性(robustness)、正确性(correctness)、效率(efficiency)和范围(scope)。
计算机视觉是一门研究如何使机器“看”的科学,掌握解决具体计算机视觉任务的方法则会帮助我们解决大规模系统的复杂问题,其应用相当广泛,包括并不限于:图像分类,人脸识别;车辆检测,行人检测;语义分割,实例分割;目标跟踪,视频分割;图像生成,视频生成。 为了让大家更好的理解计算机视觉在人工智能领域的强大应用,12月7日晚,上海交通大学卢宪凯博士受AI研习社邀请,开展了一场主题为《计算机视觉概述和深度学习简介》的公开课,卢博士在公开课中给大家介绍了计算机视觉的定义、研究方法和应用举例,重点介绍深度学习发展历史,常见深
在快递行业发达的今天,有数不胜数的货运公司、快递公司,这些公司都有自己的运输车辆,请师傅开车送货。
2016年3月17日,日本野村综合研究所总结了未来将对商业和社会造成深远影响的8项重要技术,并预测了这些技术至2020年的发展情况。这8项重要技术包括:人工智能(AI)、物联网、可穿戴计算、客户体验、API经济、金融科技、零售技术、数字营销。其中,包含深度学习在内的AI,成为金融科技、服务型机器人等重要技术普及与实用化的关键。 野村综合研究所发布的未来5年AI相关技术发展的路线图主要内容如下: (1)2015~2017年度,图像识别的实用化逐渐走向普及 语音识别、图像识别、自然语言处理三个领域有可能因包含深
随着城市化的快速推进及人口流动的快速增加,传统社区治理在人员出入管控、安防巡逻、车辆停放管理等典型场景下都面临着人力不足、效率低下、响应不及时等诸多难题。而人工智能技术代替人力,实现人、车、事的精准治理,大幅降低人力、物质、时间等成本,以最低成本发挥最强大的管理效能,有效推动城市治理向更“数字化、自动化、智慧化”的方向演进。
车辆轮轴监控识别系统根据神经网络图像识别算法与边缘计算加视觉识别技术结合在一起,以保证算法识别的准确性。车辆轮轴监控识别系统利用前端监控摄像头实时监控视频流上传至系统服务器,车辆轮轴监控识别系统实时读取抓拍图片进行识别与分析。对外输出车辆轮轴数量、车牌或警报信息。
随着时代的发展,生活质量的提高,汽车是现代生活的必需品。汽车保有量日益增多,势必会带来停车难、停车管理难的问题。传统IC/ID取卡票的方式虽然看似一个简单的动作,当车流量较大时就会造成停车场出入口的拥堵,给人们停车带来不便,浪费大量的停车时间;停车场票箱内卡容量有限,需要停车场管理人员不停地往票箱内放置卡片,而对于车主来说,由于卡片的保存不当,丢卡的现象时常出现。一旦卡片丢失,整个停车记录就无法核对,给停车场管理带来一些麻烦。
烟火识别算法可以精准识别出视频和图像中的烟雾、火焰、火点,并能定位和标记出具体的位置,在消防领域具有广泛的应用意义。智能分析网关V2版现已经可支持烟火识别,当检测到疑似烟火的场景时,将通过主动预警推送的方式,对现场进行抓拍、保存、上传至平台,并将预警消息通过短信、电话、邮件、微信等方式推送给相关管理人员。
导读:本文主要介绍了机器视觉的主要应用场景,目前绝大部分数字信息都是以图片或视频的形式存在的,若要对这些信息进行有效分析利用,则要依赖于机器视觉技术的发展,虽然目前已有的技术已经能够解决很多问题,但离解决所有问题还很遥远,因此机器视觉的应用前景还是非常广阔的。
【新智元导读】4月18日,清华大学《人工智能前沿与产业趋势》系列讲座第四讲,深睿医疗首席科学家、美国计算机协会杰出科学家、IEEE Fellow俞益洲为大家介绍了目前计算机视觉的应用和落地,特别是在医疗影像方面的发展状况、遭遇的挑战、以及克服挑战的思路。最后和清华大学自动化系副教授、博导鲁继文以及知名天使投资人、梅花创投创始合伙人吴世春一起对计算机视觉的落地机会进行了畅想。
无人机已经越来越走入人们的生产和生活,使用无人机进行新闻报道、城市管理、治理监控也成为社会发展重要新趋势。
RK3588 NPU性能可谓十分强大,6TOPS设计能够实现高效的神经网络推理计算。这使得RK3588在图像识别、语音识别、自然语言处理等人工智能领域有着极高的性能表现。
看懂一个东西对人类来说很容易,但是对机器来说却是很难的,这个时候图像识别技术就应运而生。今天我们就为大家揭秘图像识别技术原理,告诉你机器如何利用卷积神经网络进行图像识别,从而“看见”这个世界。
卷积神经网络(Convolutional Neural Network,CNN)是一种深度神经网络模型,主要用于图像识别、语音识别和自然语言处理等任务。它通过卷积层、池化层和全连接层来实现特征提取和分类。
大众集团日前宣布,将加大投资力度来加强其位于德国慕尼黑AI数据实验室的实力,专门致力于人工智能技术的研发。大众方面称,虽然目前正在削减内部开支,但作为IT计划的一部分,大众在慕尼黑的AI数据实验室并未受到影响,会有更多的人力投入人工智能团队的建设。 据了解,大众数据实验室的研究团队将继续发展无人驾驶技术和机器人学,主要研究方向包括机器学习技术,即引导机器人和传感器加强识别能力,以对行驶中遇到的物体和不同情形作出辨识,换言之,团队希望提高汽车摄像头的检测能力,减少无人驾驶汽车因拍摄盲区等而存在的安全隐患。 另
人工智能(Artificial Intelligence,简称AI)作为一项革命性的技术,正在改变我们的生活和业务方式。在当今数字化时代,腾讯云作为领先的云计算服务提供商,为开发者提供了广泛的人工智能服务和工具,为他们开拓创新的道路铺平了道路。
最近,图像识别领域发布了白皮书,简单翻译一下做个总结。 ---- 目录 [1] Introduction 1.1 Exponential Growth of Image and Video 1.2 Statistics [2] Image Recognition [3] Recent Innovations 3.1 Approaches 3.2 Deep Neural Networks [4] Applications 4.1. Inform
编者按:一年前,Facebook发布了照片分享应用Moments,于前不久关闭了iOS版Facebook照片同步功能,力推Moments应用,该应用运用了人脸识别技术。不过,Facebook人工智能实验室负责人Yann Lecun在为我们通俗易懂地介绍Moments的应用原理时表示,除了简单的人脸识别技术,Facebook将利用更卓越的计算机视觉技术和AI技术为用户提供更多便利,如尝试开发计算机的移情能力,当然,这些便利的应用背后需要强大的算法和繁琐的训练过程做支撑。让我们一起期待未来计算机能够更好地理解人
百度Apollo是百度公司推出的自动驾驶开发平台,旨在为汽车制造商、供应商和开发者提供一站式的自动驾驶解决方案。该平台涵盖了硬件、软件和数据服务,为开发者提供了丰富的工具和资源,助力他们快速实现自动驾驶技术的研发和应用。
新智元 AI DAILY 1 谷歌收购法国图像识别公司Moodstocks 谷歌昨天宣布收购巴黎初创公司Moodstocks,该公司为智能手机开发基于机器学习的图像识别技术。收购的具体条款并没有披露
一直以来,大家都在盛传深度学习是工程师的风口,但是对于深度学习和行业的联系却很少被提及。
小编相信,现在的很多人都对人工智能比较感兴趣,觉得它很厉害,很高大上,实际上呢,也的确是这样,然而,由于大家都不一定在这个圈子,所以可能只有或多或少的了解,为了照顾到大部分老铁们,咱们今天来聊聊人工智能那些事儿。先来点开胃菜:
新智元报道 编辑:克雷格 【新智元导读】最近,中国宣布对进口汽车降低关税,这对中国车企来说,带来竞争结果并非全是挑战。下周,北京车展将开幕,这是中国2018年的第一个大展,在中美贸易关系微妙的背景下,国内车企的主打车的高性能、低价格,更像是一次集体秀肌肉。 马斯克最近可以不用睡在工厂了。 不久前,中国宣布将相当幅度降低汽车进口关税,很可能将整车关税从目前的25%降低到15%,以特斯拉为代表的美国车企将直接因此受益。 但对中国车企来说,降税带来竞争结果并非全是挑战,况且,在特斯拉们进门之前,现在
计算机视觉系统相当于给计算安装上相机和算法,使得计算机可以感知环境的能力,从而实现目标识别、跟踪、测量等,并进一步进行图像处理。让其转化为更适合人们观察或者仪器检测的图像,最终为人们的日常生活提供帮助!
2022年半导体大会正式开启,点击图片立刻参与! 智能辅助驾驶,未来可期。 作者 | 来自镁客星球的王饱饱 智能辅助驾驶,正处于产业“爆发”的前夜。 镁客网注意到,近年来,随着中国基建工程的大力推进,交通运输网络的日益发达,在带来客运、物流货运产业兴旺的同时,一些隐患也随之浮出水面。像“两客一危一重货”(“两客”指班线客车及旅游包车,“一危”指危化品运输车,“一重货”指重型货车),由于客观上存在体型庞大、盲区多、载人或载物量大、司机疲劳驾驶问题等特点,交通事故的发生率有逐年上升的势头。 记者发现,面对这些
该请求用于检测一张车辆图片的具体车型。即对于输入的一张图片(可正常解码,且长宽比适宜),输出图片的车辆品牌及型号。
图像识别市场估计将从2016年的159.5亿美元增长到2021年的389.2亿美元,在2016年至2021年之间的复合年增长率为19.5%。机器学习和高带宽数据服务的使用进步推动了这项技术的发展。 。电子商务,汽车,医疗保健和游戏等不同领域的公司正在迅速采用图像识别。根据MarketsandMarkets的报告,图像识别市场分为硬件,软件和服务。以智能手机和扫描仪为主的硬件部分可以在图像识别市场的增长中发挥巨大作用。越来越需要具有创新技术(例如监控摄像头和面部识别)的安全应用程序和产品。
【新智元导读】在本文中,作者先探讨了深度学习的特点和优势,然后介绍了12种类型的AI问题,即:在哪些场景下应该使用人工智能(AI)?作者强调企业AI问题,因为他认为AI会影响许多主流的应用。 深度学习能解决什么问题? 首先,让我们探讨深度学习是什么。 深度学习是指由许多层组成的人工神经网络。“深”是指层数多。相比深度学习,其他的许多机器学习算法是浅的,例如 SVM,因为它们没有多层的深架构。多层的架构允许后面的计算建立在前面的计算之上。目前的深度学习网络已经有10+甚至100+层。 多层的存在使得网络能够学
谷歌的人工智能平台Alpha Go让AI再次进入了普通老百姓的视野,我记得2016年3月时Alpha Go第一轮测试结果就令大家十分震惊。随着技术的进步,AI的能力一定会越来越强。我们可以看到近两年AI在深度学习方面的技术进展成果显著。今天我为大家准备了一些最近与摄像头相关的人工智能研究成果。
专访首汽租车魏东:人工智能时代,车不再只是机械设备,而是“第三空间”
加油站智能视频监控系统方案利用加油站现场的已经装好的监控摄像头对加油站进行打电话识别、抽烟识别、明火烟雾识别、车辆识别。除此之外,加油站智能视频监控系统方案还可以对汽油静电释放检测、灭火器摆放识别、玩手机识别。有益于加油站安全隐患的管理把控,从根源上降低与分析安全隐患的主要原因,提升管控效率。
Tiait Brown 用57行代码和开源工具 DIY 了一个车牌自动识别系统,完全实现了澳大利亚政府花8600万美元投资的项目效果。 过去一年,维多利亚州共有超过1.6万辆车被盗,费用约为1.7亿
语音技术、文字识别、图像识别、车辆分析、图像审核、人脸识别、手机号处理、金融股票、天气和环境、二维码验证码、文件处理,等等。
参考来源 / IEC:《Artificial intelligence across industries》白皮书
据腾讯研究院统计,截至2017年6月,全球人工智能初创企业共计2617家。美国占据1078家居首,中国以592家企业排名第二,其后分别是英国,以色列,加拿大等国家。本文中选取了国外和国内部分有代表性的AI产业链条上相关公司就行分析(排名不分先后),希望对有志于从事人工智能相关工作或者想了解AI行业目前发展现状的朋友能有所帮助。小编会从AI芯片、应用层算法、应用领域等方面对相关公司进行盘点,由于部分公司可能会涉及产业链条上不同的领域,文中侧重选取了某些点进行分析阐述。备注:文中涉及到的企业估值均源于公开资料,本文对数字真实性不做任何担保;对于企业的明星指数是小编根据公开资料以及行业内部朋友反馈做的综合评估,不作为投资参考。
【新智元导读】作者Tiait Brown 用57行代码和开源工具 DIY 了一个车牌自动识别系统,基本实现了澳大利亚政府投资8600万美元想要的效果。 (文/Tiait Brown)维多利亚警察局是澳大利亚维多利亚州的主要执法机构。过去一年,维多利亚州共有超过1.6万辆车被盗,费用约为1.7亿美元,警方正在试验各种技术驱动的解决方案来打击汽车盗窃。 为了防止盗用车辆的欺诈性销售,管理部门VicRoads启用了一项基于网络的服务来检查车辆注册状况。VicRoads还投资购买了一个固定牌照扫描仪——一个固定的三
领取专属 10元无门槛券
手把手带您无忧上云