首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从模型源码梳理TensorFlow的形状相关操作

[阿里DIN]从模型源码梳理TensorFlow的形状相关操作 目录 [阿里DIN]从模型源码梳理TensorFlow的形状相关操作 0x00 摘要 0x01 reduce_sum 1.1 reduce_sum...因为篇幅所限,所以之前的整体代码讲解中,很多细节没有深入,所以本文会就 “TensorFlow形状相关” 这些细节进行探讨,旨在帮助小伙伴们详细了解每一的步骤以及为什么要这样做。...0x01 reduce_sum 因为 reduce_sum 中有降维可能,所以在这里一起讲解 1.1 reduce_sum函数 reduce_sum() 用于计算张量tensor沿着某一维度的和,可以在求和后降维...; axis:指定的维,如果不指定,则计算所有元素的总和; keepdims:是否保持原有张量的维度,设置为True,结果保持输入tensor的形状,设置为False,结果会降低维度,如果不传入这个参数...shape 为要调整为的形状,shape里最多有一个维度的值可以填写为-1,表示自动计算此维度。

83620
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Ubuntu】Tensorflow对训练后的模型做8位(uint8)量化转换

    本文链接:https://blog.csdn.net/huachao1001/article/details/101285133 1 量化为PB格式模型 从官方提供的tensorflow版本与编译工具版本中选择...bazel版本下载,各个版本的Tensorflow与各个编译环境映射表如下。...bazel build tensorflow/tools/graph_transforms:transform_graph 1.3 执行转换量化命令 将导出的pb模型执行模型量化转换,以tensorflow_inception_graph.pb...模型为例,命令如下: bazel-bin/tensorflow/tools/graph_transforms/transform_graph \ --in_graph=tensorflow_inception_graph.pb...除了使用transform_graph工具对pb模型进行量化转换外,还可以使用TFLite对模型进行量化处理,但是需要注意的是,使用TFLite转换得到的量化模型是tflite结构,意味着只能在tflite

    1.8K30

    如何将自己开发的模型转换为TensorFlow Lite可用模型

    从一个简单的模型开始 首先,我想选择一个未经过预先训练或转换成.tflite文件的TensorFlow模型,理所当然我选择使用MNIST数据训练的简单的神经网络(目前支持3种TFLite模型:MobileNet...训练后在Tensorboard中可视化graph.pbtxt - 在这里,我们标记了输入和输出图层以及仅用于模型训练中的不必要图层。 使用Tensorboard,我们可以看到训练脚本中生成的每个图层。...用它在每一步评估图形,识别不支持的图层,并找出输入和输出形状。...不要让TensorFlow为您做。由于我们在训练脚本中做了一些小改动,我们可以轻松填写每个转换工具中的不同选项。...TensorFlow格式 - 理解每种工具和操作如何生成不同的文件格式。如果能自动获取SavedGraph并将其转换(缩减中间的一堆步骤)会很棒,但我们还没有做到。

    3.1K41

    Tensorflow SavedModel模型的保存与加载

    这两天搜索了不少关于Tensorflow模型保存与加载的资料,发现很多资料都是关于checkpoints模型格式的,而最新的SavedModel模型格式则资料较少,为此总结一下TensorFlow如何保存...其主要优点是SaveModel与语言无关,比如可以使用python语言训练模型,然后在Java中非常方便的加载模型。当然这也不是说checkpoints模型格式做不到,只是在跨语言时比较麻烦。...要保存该模型,我们还需要对代码作一点小小的改动。 添加命名 在输入和输出Ops中添加名称,这样我们在加载时可以方便的按名称引用操作。...这里说说tag的用途吧。 一个模型可以包含不同的MetaGraphDef,什么时候需要多个MetaGraphDef呢?也许你想保存图形的CPU版本和GPU版本,或者你想区分训练和发布版本。...这个时候tag就可以用来区分不同的MetaGraphDef,加载的时候能够根据tag来加载模型的不同计算图。

    5.5K30

    Tensorflow入门教程(二十一)——模型的转换

    有读者阅读了前面我分享Vnet网络的案例,在下载了我在百度云盘上训练好的模型后,想要将模型转成protocal buffer(pb)格式。...这其实不是特别难,为了方便大家学习,我简单的介绍一些如何进行模型转换。 废话不多说了,我直接上代码吧。 ?...(神经网络模型结果中的每个卷积层中的权重W和偏置B数据),第三步定义输出节点的名字,例如在这里我们指定输入和输出节点的名字(输入Input,输出output/Sigmoid),第四步将模型graph和输出节点名字做为参数来冻结...graph,第五步将冻结graph做为参数输出生成pb模型。...2D版本的VNet和3D版本的VNet的模型转换我都已经实现好了。感兴趣的朋友可以在github上看到详细的过程,如果大家觉得这个项目还不错,希望大家给个Star并Fork,可以让更多的人学习。

    69530

    业界 | TensorFlow 携手 NVIDIA,使用 TensorRT 优化 TensorFlow Serving 性能

    /tensorrt TensorFlow Serving 是应用于机器学习模型的灵活的高性能服务系统,而 NVIDIA TensorRT 则是一个用以实现高性能深度学习推理的平台,将二者相结合后,用户可以轻松地实现最佳性能的...--dir 和 --output_dir 参数会告知它在哪里找到 SavedModel 以及输出转换后的 SavedModel,而 --tag_set 则让它知道该转换 SavedModel 中的哪张图表...如果已知推理过程中的实际批次大小上限,同时该值还能够与之匹配,那么转换后的模型就是最优模型。...这是因为在转换期间,TensorRT 需要知道所有的形状。对于该案例中所使用的 ResNet 模型,它的张量没有固定的形状,这也是我们需要用到该参数的原因。...Serving 和 Docker 生成经 TF-TRT 转换的模型与创建一个普通的模型一样简单。

    1.3K20

    怎样用英伟达TensorRT优化TensorFlow Serving的性能?谷歌工程师一文详解

    为了享受 TensorRT 带来的好处,我们需要在 TensorFlow Serving Docker 容器内运行转换命令,从而将此模型转换为使用 TensorRT 运行运算的模型: $ docker...—dir 和 —output_dir 参数会指示 SavedModel 的位置以及在何处输出转换后的 SavedModel,而 —tag_set 则指示 SavedModel 中要转换的图表。...此转换器要求将由 TensorRT 处理的所有张量将其首个维度作为批次维度,而该参数则指示推理过程中会产生的最大值。若已知推理过程中的实际批次大小上限且该值与之匹配,则转换后的模型即为最优模型。...请注意,转换后的模型无法处理批次规模大于此处所指定大小的输入,但可处理批次规模更小的输入 —is_dynamic_op 指示在模型运行时进行实际转换。...原因在于,在进行转换时,TensorRT 需要明确所有形状。

    3.4K40

    优化NVIDIA GPU性能,实现高效的模型推理

    source=post_page--------------------------- 在TensorFlow中下载并运行原型模型 通过与CPU协作来优化模型 使用TensorRT优化模型 比较和结论...将Colab GPU实例的推理时间提高到: 通过在CPU上放置控制流操作来实现1.3x 通过转换预先训练的TensorFlow模型并在TensorRT中运行它来获得4.0x 步骤0:在TensorFlow...因此,在构建模型时必须仔细选择图层,以使其与TensorRT兼容,要在TensorRT中运行预先训练的TensorFlow模型,需要执行以下步骤: 将TensorFlow模型转换为UFF格式 构建TensorRT...推理引擎 将TensorFlow模型转换为UFF格式 首先,将SSD MobileNet V2 TensorFlow冻结模型转换为UFF格式,可以使用Graph Surgeon和UFF转换器通过TensorRT...关键操作是用NonMaxSuppression 操作替换原始图中的NMS_TRT操作,这是用于非最大抑制的TensorRT内核。然后,它将修改后的图形传递给UFF转换器并输出最终的UFF模型。

    2.9K30

    讲解 ERROR: Network must have at least one output

    检查模型加载过程:如果我们是从预训练模型加载网络结构,请确保加载过程正确无误,并且网络结构被正确地添加到模型中。确认模型输入和输出:确定模型的输入和输出,并验证它们的形状和类型是否正确。...然后,我们创建了一个随机输入,用于将模型转换为TensorRT引擎。接下来,我们使用trt.Builder创建了一个TensorRT网络,并将输入和输出添加到网络。...TensorRT通过以下几个主要的技术组件来提供最佳的推理性能:网络定义:TensorRT提供了一个网络定义API,允许用户将各种深度学习框架(如TensorFlow、PyTorch和Caffe)中训练好的模型导入到...此外,TensorRT还会自动对模型进行量化,将浮点模型转化为定点模型,加速计算和减少内存占用。图优化:TensorRT将优化后的网络表示为一个由节点和边组成的推理图。...动态Tensor:TensorRT支持在推理过程中接受动态形状和动态大小的输入。这使得部署适应不同形状和大小的输入更加灵活,避免了重复编译和部署模型的步骤。

    50310

    边缘计算笔记(三):从Tensorflow生成TensorRT引擎的方法(完结篇)

    例如我们想将训练好的Inception V1现成模型,从TensorFlow转换为TensorRT, 我们可以从(TensorBoard)显示的结构图的最发现找到输入节点,(从该节点的右上角信息)中,可以看出来它被叫做...(这信息框)里的这些数值,在我们转换到TensorRT的时候,需要用来作为参考. 在这个网络结构图的最上方,是输出节点。...对于一些模型来说,这个转换脚本能够毫无问题的运行,并生成序列化后的引擎。但对于一些其他模型,包含有TensorRT所不支持的操作类型的时候,会出现这个幻灯片中类似的这种警告信息。...在TensorFlow-Slim模型库中,有一种叫MobileNet的预先训练好的现成网络模型,这种模型使用了Relu6()操作层,而该操作/函数,并不被TensorRT支持。...到这里就结束了如何用TensorRT来优化TensorFlow模型的讨论。(然后我再讲一点)如何执行你刚才生成的优化引擎。

    4.4K10

    Tensorflow中模型保存与回收的简单总结

    今天要聊得是怎么利用TensorFlow来保存我们的模型文件,以及模型文件的回收(读取)。...刚开始接触TensorFlow的时候,没在意模型文件的使用,只要能顺利跑通代码不出bug就万事大吉,但是随着接触的数据量的增加以及训练时间的增长,万一中间由于各种原因(比如显卡线断了,电源线断了,手残点了...,恩,没错都是我遇到的问题… ./摊手.sh)意外中断,而没有保存模型文件,那一刻想屎的心都有了。 那么问题来了,我们需要重头开始训练模型吗,答案肯定是不用的,当然前提是保存了模型文件。...首先说一下这个模型文件通常是二进制格式保存的,那么里面到底是什么东西呢, 其实就是训练数据的根据网络结构计算得到的参数值。等我们再需要的时候,直接提取出来就好了。...TensorFlow的模型保存主要由Saver类来控制,接下来我会举个栗子,来说明怎么使用Saver类。下面的代码里面我会顺便把一些基础的问题提一下,了解的同学可以直接看最后两幅图。 ? ? ? ?

    1.2K80

    使用ONNX将GPT Neo(或其他)投入生产

    互操作性是指: 跨框架共享模型(例如,torch到tensorflow) 跨各种硬件(如CPU、GPU、FPGA等)共享模型 这对社区有好处。尝试在同一GPU上使用两个不同的框架部署模型。...理论上,我们期望返回的形状是(1,768),因为我们使用的是一个句子编码器。 这种行为是由于句子转换器库需要一个额外的平均池层添加到token嵌入之上的管道中。...model = SentenceTransformer(config=nlp.model.config).from_pretrained(model_name) 最后检查模型产生的输出与原始模型大致相同...在导出我们的新模型之前,唯一要做的就是修改我们之前导出的动态轴和输出名称。这是因为我们现在有了一个不同的输出层,它也是动态的(在批大小上)。我们可以使用标识层的名称来更好地标识输出层。...现在我们已经准备好了新的ONNX模型,并且可以用它进行推理。输出形状现在是预期的(1768),它几乎等于原始模型。

    2.9K30

    能在不同的深度学习框架之间转换模型?微软的MMdnn做到了

    Microsoft/MMdnn:深度学习框架随心切换 学习深度学习的各位同学都希望自己的模型能在不同的深度学习框架之间随意转换,比如,斯坦福大学CVGL实验室的Saumitro Dasgupta就做过一个把...Caffe模型转换到TensorFlow的工具caffe-tensorflow。...,Tensorflow,CNTK和PyTorch等框架之间实现模型的转换。...本质上,它就是把一个框架训练的多个DNN模型转换成其他框架下的模型,主要功能如下: 模型文件转换器:在不同框架之间转换DNN模型 模型代码片段生成器:为不同框架生成训练或推理代码片段 模型可视化工具:可视化不同框架下...为此,我们提供了一个这样的模型转换器,来帮助开发人员通过中间表示格式在不同框架之间实现模型的转换。

    1.8K50

    能在不同的深度学习框架之间转换模型?微软的MMdnn做到了

    Microsoft/MMdnn:深度学习框架随心切换 学习深度学习的各位同学都希望自己的模型能在不同的深度学习框架之间随意转换,比如,斯坦福大学CVGL实验室的Saumitro Dasgupta就做过一个把...Caffe模型转换到TensorFlow的工具caffe-tensorflow。...,Tensorflow,CNTK和PyTorch等框架之间实现模型的转换。...本质上,它就是把一个框架训练的多个DNN模型转换成其他框架下的模型,主要功能如下: 模型文件转换器:在不同框架之间转换DNN模型 模型代码片段生成器:为不同框架生成训练或推理代码片段 模型可视化工具:可视化不同框架下...为此,我们提供了一个这样的模型转换器,来帮助开发人员通过中间表示格式在不同框架之间实现模型的转换。

    1.3K110

    TensorFlow深度学习笔记 文本与序列的深度模型

    Deep Models for Text and Sequence Rare Event 与其他机器学习不同,在文本分析里,陌生的东西(rare event)往往是最重要的,而最常见的东西往往是最不重要的...单词经过embedding变成一个vector 然后输入一个WX+b,做一个线性模型 输出的label概率为输入文本中的词汇 问题在于WX+b输出时,label太多了,计算这种softmax很低效 解决方法是...,可以更高效地查找最近单词,但降维过程中要保持邻居关系(原来接近的降维后还要接近) t-SNE就是这样一种有效的方法 类比 实际上我们能得到的不仅是单词的邻接关系,由于将单词向量化,可以对单词进行计算...这样的模型能让整个cell更好地记忆与遗忘 由于整个模型都是线性的,所以可以方便地求导和训练 LSTM Regularization L2, works Dropout on the input or...我们可以利用这一点,输入一个序列,到一个RNN里,将输出输入到另一个逆RNN序列,形成另一种序列,比如,语言翻译 如果我们将CNN的输出接到一个RNN,就可以做一种识图系统 循环神经网络实践 觉得我的文章对您有帮助的话

    822100

    边缘计算笔记(一): Jetson TX2上从TensorFlow 到TensorRT

    您将了解到: 1.TensorFlow性能如何与使用流行模型(如Inception和MobileNet)的TensorRT进行比较 2在Jetson上运行TensorFlow和TensorRT的系统设置...3 如何检查TensorFlow graph 以获得TensorRT兼容性 4.将TensorFlow图像分类模型转换为TensorRT的工作流程 5....我还将介绍用于深度学习模型的推理加速器tensorRT,您将了解将模型从tensorflow转换为tensorRT以部署在Judson TX2上所获得的性能优势。...我们还会讲解使用Jetpack 3.2运行代码示例,最后,我将讨论将tensorflow模型转换为tensorRT的工作流。...TensorRT是由nvidia提供的,是一种优化神经网络推理的加速器,与tensorflow和其他框架不同,tensorRT不用于训练深度学习模型,而是在你完成训练时 使用tensorRT优化模型以进行部署

    4.8K51

    边缘计算笔记(二): 从tensorflow生成tensorRT引擎的方法

    您将了解到: 1.TensorFlow性能如何与使用流行模型(如Inception和MobileNet)的TensorRT进行比较 2在Jetson上运行TensorFlow和TensorRT的系统设置...3 如何检查TensorFlow graph 以获得TensorRT兼容性 4.将TensorFlow图像分类模型转换为TensorRT的工作流程 5....当将冻结的图序列化后的二进制输出,保存到磁盘上的时候,通常我们叫这个为冻结图文件,或者其他的类似叫法。这个文件将用作后续的转换脚本输入用。 ?...当我们生成了冻结图文件后,下一步就是确定要用TensorRT去优化的子图(sub graph),这通过输入名称、输入维度和输出名称来决定。...在转换为tensorRT时,我们必须指定输出节点的名称,定义我们想要优化的图形(graph)部分。

    4.1K40

    深度学习模型加速:Pytorch模型转TensorRT模型

    经过一段时间的调研与实践,算是对模型加速这方面有了一定的了解,便促成了此文。 1、如何实现模型加速? 既然要提升效率,实现模型加速,那么具体应该怎么做呢?...目前常用的深度学习模型加速的方法是:将pytorch/tensorflow等表示的模型转化为TensorRT表示的模型。 pytorch和tensorflow我们了解,那么TensorRT是什么呢?...实现 Pytorch/Tensorflow Model -> TensorRT Model 的转换。 模型推断(Inference)部分。...,这就是转换得到的TensorRT模型。...至此,模型转换部分全部结束。 5、模型推断(Inference) 这部分我们要使用转换得到的.trt模型进行Inference,要解决的任务就是:如何加载该模型,输入测试数据并得到对应的输出。

    70320
    领券