首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

CVPR 2019:精确目标检测的不确定边界框回归

这篇论文提出了新的边界框回归损失针对目标框的移动以及位置方差进行学习,这种方法在几乎不增加计算量的基础上提高不同结构定位的准确性。...解决方法 为了解决上诉定位不精确问题,论文提出了新的边界框损失函数-KL损失,可以同时学习边界框的回归以及定位的不准确性。...特别的,为了捕捉边界框预测的不确定性,首先将边界框的预测以及ground truth框分别看做高斯分布函数和狄克拉分布函数。则新定义的回归损失可以看作是预测分布和真实分布之间的KL散度。...边界框回归器从模糊的边界框中获得较小的损失。(1)在后处理过程中,所学的方差是有用的。...3.2 基于KL损失的边界框回归 论文目标定位的目标是通过在N个样本最小化 和 之间的KL散度来评估 ,如公式(4)所示: 使用KL散度作为边界框回归的损失函数Lreg。分类损失Lcls保持不变。

1.6K30

【计算机视觉——RCNN目标检测系列】二、边界框回归(Bounding-Box Regression)

接下来,我们对边界框回归(Bounding-Box Regression)进行详细介绍。 首先我们对边界框回归的输入数据集进行说明。输入到边界框回归的数据集为 ? ,其中 ? , ? 。 ?...在图1中红色框代表候选目标框,绿色框代表真实目标框,蓝色框代表边界框回归算法预测目标框,红色圆圈代表选候选目标框的中心点,绿色圆圈代表选真实目标框的中心点,蓝色圆圈代表选边界框回归算法预测目标框的中心点...---- 二、边界框回归细节 RCNN论文里指出,边界框回归是利用平移变换和尺度变换来实现映射 。平移变换的计算公式如下: ? 尺度变换的计算公式如下: ? 其中 ? ( ? 代表 ?...可以看出,上述模型就是一个Ridge回归模型。在RCNN中,边界框回归要设计4个不同的Ridge回归模型分别求 ? 。 ---- 三、相关问题 3.1 为什么使用相对坐标差?...时候选目标框和真实目标框非常接近,即IoU值较大。按照RCNN论文的说法,IoU大于0.6时,边界框回归可视为线型变换。 至此,边界框回归算法的讲解全部结束。

1.8K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    目标检测框回归问题

    框回归可以分为两大类,基于x,y,w,h的回归(比如Faster R-CNN、YOLO、RetinaNet里框回归的loss),基于IoU的回归(比如IoU loss、GIoU loss、DIoU loss...基于x,y,w,h的回归 基于x,y,w,h的回归,可以细分为x、y(GT框的中心)的回归和w、h的回归。...对scale进行reweight 关于x、y、w、h的回归,YOLO还会对不同scale的框回归loss进行reweight,减小大scale的框回归loss,增大小scale的框回归loss,Fatser...2、对框scale的invariance特性 框回归问题中,对框scale具有invariance是否一定是优点呢?...3、anchor free 这里我们没提到anchor free的目标检测框回归计算方式,但是思路是类似的,基于上述的思路,可以很自然地想到anchor free目标检测器里框回归会如何设计。 ?

    79530

    对象检测边界框损失 – 从IOU到ProbIOU

    通常,目标检测需要两个损失函数,一个用于对象分类,另一个用于边界框回归(BBR)。本文将重点介绍 IoU 损失函数(GIoU 损失、DIoU 损失和 CIoU 损失、ProbIoU)。...因此,BBR使用基于 IoU 的损失函数来实现计算mAP,mAP的典型计算公式与表示如下: 但是这种最原始的IoU并交比的损失计算方式是有缺陷的,如当预测框与真实框没有相交的时候,IoU损失就是0,这样就导致了没有梯度...加入惩罚项因子以后,对于没有重叠的预测也可以实现边界框回归了,从而改善了IoU的缺陷。...是惩罚性因子,这样R=0的时候就是普通的IoU损失,从而把IoU损失改进看成是寻找好的惩罚性因子,然后作者通过一通神的思考以后给出了下面的惩罚性因子公式: 这样 DIoU就出来 这样是不是梯度会大一些,回归起来会更猛一点...ProbIoU ProbIoU可以实现OBB旋转对象映射到GBB、然后实现预测框与真实框的回归IoU损失功能,然后基于协方差矩阵,计算巴氏距离以后,再基于BD实现损失计算 跟原始的IoU比较,有明显的改善

    99210

    ​关注难易样本分布 Focaler-IoU | 提升边界框回归在目标检测中的应用性能 !

    在目标检测领域,边界框回归起着至关重要的作用,而目标检测的定位精度很大程度上取决于边界框回归的损失函数。...现有研究通过利用边界框之间的几何关系来提高回归性能,而忽略了难以和容易样本分布对边界框回归的影响。...这篇文章的主要贡献如下: 分析了困难样本和容易样本分布对边界框回归的影响。基于现有的边界框回归方法,提出了Focaler-IoU,通过线性区间映射关注不同的回归样本。...SIoU Metric 在前人研究的基础上,SIoU 进一步考虑了边界框之间的角度对边界框回归的影响,旨在通过减小 Anchor 框和 GT 框之间的角度差异来加速收敛过程。...对于以简单样本为主的检测任务,在边界框回归过程中关注简单样本有助于提高检测性能。对于以难以检测的样本为主的检测任务,相比之下,则需要关注难以检测样本的边界框回归。

    46710

    用于精确目标检测的多网格冗余边界框标注

    两阶段网络依赖于一个潜在的区域建议网络,该网络生成可能包含感兴趣对象的图像的候选区域,第二个检测头处理分类和边界框回归。...在单阶段目标检测中,检测是一个单一的、完全统一的回归问题,它在一个完整的前向传递中同时处理分类和定位。因此,通常,单阶段网络更轻、更快且易于实现。...上图显示了三个对象的边界框,其中包含更多关于狗的边界框的细节。下图显示了上图的缩小区域,重点是狗的边界框中心。...包含狗边界框中心的网格单元的左上角坐标用数字0标记,而包含中心的网格周围的其他八个网格单元的标签从1到8。 到目前为止,我已经解释了包含目标边界框中心的网格如何注释目标的基本事实。...然后,我们从整个训练数据集的随机q个图像中迭代地选择p个对象及其边界框。然后,我们生成使用它们的索引作为ID选择的p个边界框的所有可能组合。

    64610

    Java Swing用户界面组件:复选框+ 滑块+组合框+边界+单选按钮

    组合框 如果有多个选择项,使用单选按钮就不太合适了,其原因是占据的屏幕空间太大。这时可以选择组合框。 当用户点击这个组件时,选择列表就会下拉出来,用户可以从中选择一项(见图9-18)。...如果下拉列表框被设置成可编辑的(editable),可以像编辑文本域一样编辑当前的选项内容。正因为这个原因,这种组件被称为组合框(combo box),它把文本域的灵活性与一组预定义的选项组合起来。...JComboBox类提供了组合框的组件。 调用setEditable方法可以编辑组合框。注意编辑只会影响当前项,而不改变列表内容。...提示:如果需要往组合框中添加大量的选项,addItem方法的性能就显得很差了。...当用户从组合框中选择一个选项时,组合框就会产生一个动作事件。为了判断哪个选项被选择,可以在事件参数上调用getSource方法来得到发送事件的组合框的一个引用。

    7.2K10

    北大、清华、微软联合提出RepPoints,比边界框更好用的目标检测方法

    抛弃边界框,更细粒度的目标表示RepPoints 在目标检测过程中,边界框是处理的基本元素。边界框描述了目标检测器各阶段的目标位置。...虽然边界框便于计算,但它们仅提供目标的粗略定位,并不完全拟合对象的形状和姿态。因此,从边界框的规则单元格中提取的特征可能会受到包含少量语义信息的背景内容或无信息的前景区域的严重影响。...这些自底向上的表示方法会识别单个的点 (例如,边界框角或对象的末端)。此外,它们的表示要么像边界框那样仍然是轴对齐的,要么需要 ground truth 对象掩码作为额外的监督。...RepPoints vs 边界框 本节将描述 RepPoints,以及它与边界框的区别。...边界框表示 边界框是一个 4-d 表示,编码目标的空间位置,即 B = (x, y, w, h), x, y 表示中心点,w, h 表示宽度和高度。

    1K10

    资源 | 1460万个目标检测边界框:谷歌开源Open Images V4数据集

    边界框 表 2 为 Open Images V4 数据集所有部分(训练集、验证集、测试集)中逾 600 类边界框标注的概述。...我们一共标注了 1460 万个边界框。平均每个图像有 8.4 个带有边界框的目标。90% 的边界框都是由谷歌的专业标注人员使用高效的「extreme clicking」界面手动绘制的 [1]。...对于验证集和测试集,我们为所有目标实例所有可能的正类图像级标签提供了详尽的边界框标注信息。所有的边界框都是手工绘制的。我们尽可能在语义层次结构中最具体的层次上标注边界框。...对于视觉关系检测任务,带有虚线轮廓的边界框将两个具有特定视觉关系的目标圈在一起。 ? 图 17:每类边界框的数量。横轴是按边界框数量对各类进行排序的结果,为了提高可读性,我们将该结果用对数刻度表示。...作为对比基线,我们绘制了面积和边长均匀分布的边界框对应的函数。我们忽略了在 COCO 中标记为人群的边界框和在 Open Image 中标记为群组的边界框。 ?

    1.6K30

    华人团队开源革新框架SegVG,边界框转为分割信号 | ECCV 2024

    尽管这些方法取得了良好的效果,但在注释的利用上仍显得不足,尤其是仅将框注释作为回归的真值样本,限制了模型的性能表现。...具体而言,视觉定位面临的挑战在于其稀疏的监督信号,每对文本和图像仅提供一个边界框标签,与目标检测任务(Object Detection)存在显著不同,因此充分利用框注释至关重要,将其视为分割掩膜(即边界框内的像素赋值为...伊利诺伊理工学院、中佛罗里达大学的研究人员提出了一个名为SegVG的新方法,旨在将边界框级的注释转化为分割信号,以提供更为丰富的监督信号。...综上,SegVG通过最大化边界框注释的利用,提供了额外的像素级监督,并通过三重对⻬消除特征之间的域差异,这在视觉定位任务中具有重要的创新意义。...指标与数据集 研究者采用的主要评估指标是交并比(IoU)和前1准确率,以评估预测边界框与真实边界框的匹配程度。

    7210

    谈谈边界(Boundary)

    上篇文章(Phoenix 1.3,迈向正确的道路)简单提了下「边界」,今早在火车上,顺着这个思路想了下去,写了篇 slide,中午分享给了团队。 我们做系统,做设计,很多时候其实就是在明确边界。...函数和函数要明确边界,模块和模块要明确边界,服务和服务要明确边界,应用和应用要明确边界。明确边界能让我们的代码逻辑严谨,条理清晰。...边界之内,对于外部世界,是个黑盒,一切物质的非物质的交换都只能在边界上通过已知的接口(interface)完成;同时来自外部世界的 impure data 在这里被校验(validate),过滤(filter...解决方案就像一个完整的生物体,它的边界大到一份复杂的商业蓝图,小到 iOS 上的一个工具软件。...我们来回顾一下刚刚谈过的边界以及它们对架构和设计的影响: ? 目前讲到的所有边界还仅仅是开发过程中我们设计的边界。运行时的边界略有不同: ?

    1.1K60

    【前沿】简化标注者工作:Google等学者提出基于智能对话的边界框标注方法

    【导读】近日,针对目标检测中边界框标注速度慢、花费高的问题,来自Google、EPFL、IST的学者发表论文提出基于智能对话的边界框标注方法。...▌摘要 ---- ---- 这篇文章引入了边界框标注的智能标注对话工具。作者训练一个agent自动为人为标注器选择一系列操作,在最短的时间生成边界框。...目标检测也不例外,前沿方法需要大量的对象周围带有标注边界框的图像。然而,获取高质量的边框是昂贵的:用于标注ILSVRC的官方协议每个框需要大约30秒。...在本文中,作者将介绍用于边界框标注的智能标注对话(IAD)。给定一个图像,检测器和目标类别进行标注,IAD的目标是自动选择标注行为序列,它能在最少的时间内产生边界框。...本文通过在PASCAL VOC 2007数据集中标注边界框来评估IAD,在以下种情况:a)具有各种期望的质量水平; b)具有不同强度的检测器; c)用两种方法绘制边界框,包括最近标注每个框只需要7s的方法

    90850

    回归,岭回归。LASSO回归

    Lasso 的基本思想是在回归系数的绝对值之和小于一个常数的约束条件下,使残差平方和最小化,从而能够产生某些严格等于0 的回归系数,得到可以解释的模型。...当t不断增大时,选入回归模型的变量会逐渐增多,当t增大到某个值时,所有变量都入选了回归模型,这个时候得到的回归模型的系数是通常意义下的最小二乘估计。...主要是岭回归(ridge regression)和lasso回归。通过对最小二乘估计加入罚约束,使某些系数的估计为0。 (3)维数缩减 主成分回归(PCR)和偏最小二乘回归(PLS)的方法。...把p个预测变量投影到m维空间(m 3、岭回归、lasso回归和elastic net三种正则化方法[] (1)岭回归[] 最小二乘估计是最小化残差平方和(RSS): 岭回归在最小化RSS的计算里加入了一个收缩惩罚项...岭回归优于最小二乘回归的原因在于方差-偏倚选择。随着lambda的增大,模型方差减小而偏倚(轻微的)增加。

    2.5K40
    领券