首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【Python】PySpark 数据计算 ⑤ ( RDD#sortBy方法 - 排序 RDD 中的元素 )

RDD 中的每个元素提取 排序键 ; 根据 传入 sortBy 方法 的 函数参数 和 其它参数 , 将 RDD 中的元素按 升序 或 降序 进行排序 , 同时还可以指定 新的 RDD 对象的 分区数...; 返回值说明 : 返回一个新的 RDD 对象 , 其中的元素是 按照指定的 排序键 进行排序的结果 ; 2、RDD#sortBy 传入的函数参数分析 RDD#sortBy 传入的函数参数 类型为 :...(T) ⇒ U T 是泛型 , 表示传入的参数类型可以是任意类型 ; U 也是泛型 , 表示 函数 返回值 的类型 可以是任意类型 ; T 类型的参数 和 U 类型的返回值 , 可以是相同的类型 ,..., 获取到每个单词 , 根据上述单词列表 , 生成一个 二元元组 列表 , 列表中每个元素的 键 Key 为单词 , 值 Value 为 数字 1 , 对上述 二元元组 列表 进行 聚合操作 , 相同的...键 Key 对应的 值 Value 进行相加 ; 将聚合后的结果的 单词出现次数作为 排序键 进行排序 , 按照升序进行排序 ; 2、代码示例 对 RDD 数据进行排序的核心代码如下 : # 对 rdd4

49310

【Python】PySpark 数据计算 ④ ( RDD#filter 方法 - 过滤 RDD 中的元素 | RDD#distinct 方法 - 对 RDD 中的元素去重 )

一、RDD#filter 方法 1、RDD#filter 方法简介 RDD#filter 方法 可以 根据 指定的条件 过滤 RDD 对象中的元素 , 并返回一个新的 RDD 对象 ; RDD#filter...传入 filter 方法中的 func 函数参数 , 其函数类型 是 接受一个 任意类型 元素作为参数 , 并返回一个布尔值 , 该布尔值的作用是表示该元素是否应该保留在新的 RDD 中 ; 返回 True...创建一个包含整数的 RDD rdd = sc.parallelize([1, 2, 3, 4, 5, 6, 7, 8, 9]) # 使用 filter 方法过滤出偶数, 删除奇数 even_numbers...RDD#distinct 方法 用于 对 RDD 中的数据进行去重操作 , 并返回一个新的 RDD 对象 ; RDD#distinct 方法 不会修改原来的 RDD 对象 ; 使用时 , 直接调用 RDD...对象的 distinct 方法 , 不需要传入任何参数 ; new_rdd = old_rdd.distinct() 上述代码中 , old_rdd 是原始 RDD 对象 , new_rdd 是元素去重后的新的

48410
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在 PySpark 中,如何将 Python 的列表转换为 RDD?

    在 PySpark 中,可以使用SparkContext的parallelize方法将 Python 的列表转换为 RDD(弹性分布式数据集)。...以下是一个示例代码,展示了如何将 Python 列表转换为 RDD:from pyspark import SparkContext# 创建 SparkContextsc = SparkContext.getOrCreate...)# 定义一个 Python 列表data_list = [1, 2, 3, 4, 5]# 将 Python 列表转换为 RDDrdd = sc.parallelize(data_list)# 打印 RDD...的内容print(rdd.collect())在这个示例中,我们首先创建了一个SparkContext对象,然后定义了一个 Python 列表data_list。...接着,使用SparkContext的parallelize方法将这个列表转换为 RDD,并存储在变量rdd中。最后,使用collect方法将 RDD 的内容收集到驱动程序并打印出来。

    6610

    【Python】PySpark 数据输入 ① ( RDD 简介 | RDD 中的数据存储与计算 | Python 容器数据转 RDD 对象 | 文件文件转 RDD 对象 )

    ; 2、RDD 中的数据存储与计算 PySpark 中 处理的 所有的数据 , 数据存储 : PySpark 中的数据都是以 RDD 对象的形式承载的 , 数据都存储在 RDD 对象中 ; 计算方法...: 大数据处理过程中使用的计算方法 , 也都定义在了 RDD 对象中 ; 计算结果 : 使用 RDD 中的计算方法对 RDD 中的数据进行计算处理 , 获得的结果数据也是封装在 RDD 对象中的 ; PySpark...中 , 通过 SparkContext 执行环境入口对象 读取 基础数据到 RDD 对象中 , 调用 RDD 对象中的计算方法 , 对 RDD 对象中的数据进行处理 , 得到新的 RDD 对象 其中有...二、Python 容器数据转 RDD 对象 1、RDD 转换 在 Python 中 , 使用 PySpark 库中的 SparkContext # parallelize 方法 , 可以将 Python...没有值 ; data4 = {"Tom": 18, "Jerry": 12} # 输出结果 rdd4 分区数量和元素: 12 , ['Tom', 'Jerry'] 字符串 转换后的 RDD 数据打印出来

    49510

    Spark编程实验二:RDD编程初级实践

    ,在pyspark中通过编程来计算以下内容: (1)该系总共有多少学生; (2)该系共开设了多少门课程; (3)Tom同学的总成绩平均分是多少; (4)求每名同学的选修的课程门数; (5)该系DataBase...要求读取所有文件中的整数,进行排序后,输出到一个新的文件中,输出的内容个数为每行两个整数,第一个整数为第二个整数的排序位次,第二个整数为原待排序的整数。.../file4.txt" rdd1 = sc.textFile(file) # 过滤出长度不为0的行 rdd2=rdd1.filter(lambda x:(len(x.strip(..." ")[1])),x)) # 将数据中的键转换成SecondarySortKey类型 rdd4=rdd3.map(lambda x: (SecondarySortKey(x[0]),x...[1])) # 对数据进行按键排序 rdd5=rdd4.sortByKey(False) # 只保留值 rdd6=rdd5.map(lambda x:x[1])

    4200

    Pyspark学习笔记(五)RDD操作(一)_RDD转换操作

    `persist( ) 前言 提示:本篇博客讲的是RDD的操作中的转换操作,即 RDD Transformations 主要参考链接: 1.PySpark RDD Transformations with...(10,1,2,4), (10,1,2,4), (20,2,2,2), (20,1,2,3)] 5.distinct(numPartitions=None) 去除RDD中的重复值;带有参数numPartitions...,(要么就重新产生,要么就拿现有的值) 7.sortBy(,ascending=True, numPartitions=None) 将RDD按照参数选出的指定数据集的键进行排序 pyspark.RDD.sortBy...【并行化】 一节已经描述过 9.coalesce( ) 重新分区,之前的博客的【并行化】一节已经描述过: 10.cache( ) 缓存,之前博文RDD【持久化】一节已经描述过; 11.persist(...) 持久化,之前博文RDD【持久化】一节已经描述过 至此,Pyspark基本的转换操作【Transformation】就介绍完了。

    2K20

    Pyspark学习笔记(五)RDD的操作

    ( ) 类似于sql中的union函数,就是将两个RDD执行合并操作;但是pyspark中的union操作似乎不会自动去重,如果需要去重就使用下面的distinct distinct( ) 去除RDD中的重复值...【并行化】 一节已经描述过 coalesce( ) 重新分区,之前的博客的【并行化】一节已经描述过: cache( ) 缓存,之前博文RDD【持久化】一节已经描述过; persist( ) 持久化,之前博文...RDD【持久化】一节已经描述过 二、pyspark 行动操作     PySpark RDD行动操作(Actions) 是将值返回给驱动程序的 PySpark 操作.行动操作会触发之前的转换操作进行执行...intersection() 返回两个RDD中的共有元素,即两个集合相交的部分.返回的元素或者记录必须在两个集合中是一模一样的,即对于键值对RDD来说,键和值都要一样才行。...subtract() 返回第一个RDD中,所有没有出现在第二个RDD中的值(即相当于减掉了第二个RDD) subtractByKey() 和subtract类似的操作

    4.4K20

    PySpark初级教程——第一步大数据分析(附代码实现)

    回想一下我们在上面看到的例子。我们要求Spark过滤大于200的数字——这本质上是一种转换。Spark有两种类型的转换: 窄转换:在窄转换中,计算单个分区结果所需的所有元素都位于父RDD的单个分区中。...例如,如果希望过滤小于100的数字,可以在每个分区上分别执行此操作。转换后的新分区仅依赖于一个分区来计算结果 ? 宽转换:在宽转换中,计算单个分区的结果所需的所有元素可能位于父RDD的多个分区中。...当大多数数字为零时使用稀疏向量。要创建一个稀疏向量,你需要提供向量的长度——非零值的索引,这些值应该严格递增且非零值。...0.0]) ### 稠密向量 ### Vectors.sparse( length, index_of_non_zero_values, non_zero_values) ### 索引应该严格递增且非零值...在稀疏矩阵中,非零项值按列为主顺序存储在压缩的稀疏列格式(CSC格式)中。

    4.5K20

    Pyspark学习笔记(五)RDD操作(三)_键值对RDD转换操作

    就是键值对RDD,每个元素是一个键值对,键(key)为省份名,值(Value)为一个list 1.keys() 该函数返回键值对RDD中,所有键(key)组成的RDD pyspark.RDD.keys...', 'Guangdong', 'Jiangsu'] 2.values() 该函数返回键值对RDD中,所有值(values)组成的RDD pyspark.RDD.values # the example...该RDD的键(key)是使用函数提取出的结果作为新的键, 该RDD的值(value)是原始pair-RDD的值作为值。...的每个元素中的值(value),应用函数,作为新键值对RDD的值,而键(key)着保持原始的不变 pyspark.RDD.mapValues # the example of mapValues print...('Shanghai', 207), ('Guangdong', 213), ('Jiangsu', 203)] 5.flatMapValues() 对原始键值对RDD的每个元素中的值(value

    1.9K40

    用Keras中的权值约束缓解过拟合

    目前有多种类型的权值约束方式,比如最大向量范数和单位向量范数,其中有些方法要求用户必须配置超参数。在本教程中,作者介绍了向深度学习神经网络模型加入权值约束以缓解过拟合的 Keras API。...如何使用 Keras 中的权值约束缓解深度神经网络中的过拟合现象(图源:https://www.flickr.com/photos/31246066@N04/5907974408/) 教程大纲 本教程分为三个部分...Keras 中的权值约束 2. 神经网络层上的权值约束 3. 权值约束的案例分析 Keras 中的权值约束 Keras API 支持权值约束技术。...非负范数(non_neg),限制权值为正。 单位范数(unit_form),限制权值大小为 1.0。 最小最大范数(min_max_norm),限制权值大小在某个范围内。...权值约束案例分析 在本章中,我们将展示如何在一个简单的二分类问题上使用权值约束缓解一个多层感知机的过拟合现象。 下面的例子给出了一个将权值约束应用到用于分类和回归问题的神经网络的模板。

    1.1K40

    PySpark数据类型转换异常分析

    1.问题描述 ---- 在使用PySpark的SparkSQL读取HDFS的文本文件创建DataFrame时,在做数据类型转换时会出现一些异常,如下: 1.在设置Schema字段类型为DoubleType...u'23' in type ”异常; 3.将字段定义为StringType类型,SparkSQL也可以对数据进行统计如sum求和,非数值的数据不会被统计。...] 2.解决方法 ---- 异常一: NameError: name 'DoubleType' is not defined 问题原因: 由于在Python代码中未引入pyspark.sql.types...3.总结 ---- 1.在上述测试代码中,如果x1列的数据中有空字符串或者非数字字符串则会导致转换失败,因此在指定字段数据类型的时候,如果数据中存在“非法数据”则需要对数据进行剔除,否则不能正常执行。...,对于非数字的数据则不进行统计。

    5.2K50

    【Python】PySpark 数据计算 ③ ( RDD#reduceByKey 函数概念 | RDD#reduceByKey 方法工作流程 | RDD#reduceByKey 语法 | 代码示例 )

    类型 RDD 对象 数据 中 相同 键 key 对应的 值 value 进行分组 , 然后 , 按照 开发者 提供的 算子 ( 逻辑 / 函数 ) 进行 聚合操作 ; 上面提到的 键值对 KV 型 的数据...", 12) PySpark 中 , 将 二元元组 中 第一个元素 称为 键 Key , 第二个元素 称为 值 Value ; 按照 键 Key 分组 , 就是按照 二元元组 中的 第一个元素 的值进行分组...Y ; 具体操作方法是 : 先将相同 键 key 对应的 值 value 列表中的元素进行 reduce 操作 , 返回一个减少后的值,并将该键值对存储在RDD中 ; 2、RDD#reduceByKey...方法工作流程 RDD#reduceByKey 方法 工作流程 : reduceByKey(func) ; 首先 , 对 RDD 对象中的数据 分区 , 每个分区中的相同 键 key 对应的 值 value...Key 为单词 , 值 Value 为 数字 1 , 对上述 二元元组 列表 进行 聚合操作 , 相同的 键 Key 对应的 值 Value 进行相加 ; 2、代码示例 首先 , 读取文件 , 将 文件转为

    76220

    大数据编程期末大作业2023

    中,包括计算Pi值的测试模块,使用hadoop jar命令提交计算Pi的MapReduce任务。...4是运行4次map任务,第二个4是每个map任务投掷次数,总投掷次数就是两者相乘,想要提高精度就可以让数字变大,但是很容易出现作业计算失败的异常,这是因为计算内存不够,所以不能调的太大。...然后启动pyspark: pyspark 再读取我们的文件并创建RDD: >>> data = sc.textFile("file:///home/zhanghc/exam2019.csv") 2、查找出各地区本科批次的分数线...# 对RDD数据进行map操作,拆分每一行数据 >>> data_map = data.map(lambda x: x.split(",")) # 对拆分后的RDD进行filter操作,过滤出本科的数据...,分析客户在餐饮方面的消费喜好,请使用Spark SQL进行编程,完成如下需求: 1、读取restaurant.csv数据,删除最后为空值的两列,再删除含有空值的行。

    4900

    Pyspark学习笔记(五)RDD操作(二)_RDD行动操作

    `aggregate(zeroValue, seqOp, combOp)` 前言 提示:本篇博客讲的是RDD的操作中的行动操作,即 RDD Action 主要参考链接: 1.PySpark RDD Actions...pyspark.RDD.collect 3.take() 返回RDD的前n个元素(无特定顺序) (仅当预期结果数组较小时才应使用此方法,因为所有数据都已加载到驱动程序的内存中) pyspark.RDD.take...3]个位置的数字为顺序 5.takeSample(withReplacement, num, seed=None) 返回此 RDD 的固定大小的采样子集 (仅当预期结果数组较小时才应使用此方法,因为所有数据都已加载到驱动程序的内存中...和map类似,但是由于foreach是行动操作,所以可以执行一些输出类的函数,比如print操作 pyspark.RDD.foreach 10.countByValue() 将此 RDD 中每个唯一值的计数作为...(20,1,2,3),1), ((20,2,2,2),1), ((10,1,2,4),2)] 11.fold(zeroValue, func) 使用给定的func和 初始值zeroV把RDD中的每个分区的元素聚合

    1.6K40

    spark 数据处理 -- 数据采样【随机抽样、分层抽样、权重抽样】

    它是从一个可以分成不同子总体(或称为层)的总体中,按规定的比例从不同层中随机抽取样品(个体)的方法。这种方法的优点是,样本的代表性比较好,抽样误差比较小。缺点是抽样手续较简单随机抽样还要繁杂些。...定量调查中的分层抽样是一种卓越的概率抽样方式,在调查中经常被使用。 选择分层键列,假设分层键列为性别,其中男性与女性的比例为6:4,那么采样结果的样本比例也为6:4。...权重采样 选择权重值列,假设权重值列为班级,样本A的班级序号为2,样本B的班级序号为1,则样本A被采样的概率为样本B的2倍。...https://www.codenong.com/44352986/ SMOT 过采样 针对类别不平衡的数据集,通过设定标签列、过采样标签和过采样率,使用SMOTE算法对设置的过采样标签类别的数据进行过采样输出过采样后的数据集...SMOTE算法使用插值的方法来为选择的少数类生成新的样本 欠采样 spark 数据采样 是均匀分布的嘛?

    6.4K10

    Pyspark学习笔记(四)弹性分布式数据集 RDD 综述(下)

    PySpark 通过使用 cache() 和persist() 提供了一种优化机制,来存储 RDD 的中间计算,以便它们可以在后续操作中重用。...当持久化或缓存一个 RDD 时,每个工作节点将它的分区数据存储在内存或磁盘中,并在该 RDD 的其他操作中重用它们。...unpersist() 将 RDD 标记为非持久的,并从内存和磁盘中删除它的所有块: rddPersist2 = rddPersist.unpersist() 关于 cache() 和 persist(...这是 RDD cache() 方法的默认行为, 并将 RDD 或 DataFrame 作为反序列化对象存储到 JVM 内存中。...MEMORY_AND_DISK 在此存储级别,RDD 将作为反序列化对象存储在 JVM 内存中。当所需的存储空间大于可用内存时,它会将一些多余的分区存储到磁盘中,并在需要时从磁盘读取数据。

    2K40

    PySpark|ML(评估器)

    引 言 在PySpark中包含了两种机器学习相关的包:MLlib和ML,二者的主要区别在于MLlib包的操作是基于RDD的,ML包的操作是基于DataFrame的。...根据之前我们叙述过的DataFrame的性能要远远好于RDD,并且MLlib已经不再被维护了,所以在本专栏中我们将不会讲解MLlib。...数据集获取地址1:https://gitee.com/dtval/data.git 数据集获取地址2:公众号后台回复spark 01 评估器简介 ML中的评估器主要是对于机器学习算法的使用,包括预测、...DecisionTreeRegressor 决策树回归 GBTRegressor 梯度提升决策树回归 GeneralizedLinearRegression 广义线性回归 IsotonicRegression 拟合一个形式自由、非递减的行到数据中...header=True, inferSchema=True, encoding='utf-8') # 查看是否有缺失值

    1.6K10

    PySpark数据计算

    本文详细讲解了PySpark中的常用RDD算子,包括map、flatMap、reduceByKey、filter、distinct和sortBy。...在 PySpark 中,所有的数据计算都是基于 RDD(弹性分布式数据集)对象进行的。RDD 提供了丰富的成员方法(算子)来执行各种数据处理操作。...可以是任意类型U:表示返回值的类型,可以是任意类型(T)-U:表示该方法接受一个参数(类型为 T),返回值的类型为 Uimport osfrom pyspark import SparkConf, SparkContext...【拓展】链式调用:在编程中将多个方法或函数的调用串联在一起的方式。在 PySpark 中,链式调用非常常见,通常用于对 RDD 进行一系列变换或操作。...语法:new_rdd = rdd.filter(func)参数func是一个函数,用于接收 RDD 中的每个元素,并返回一个布尔值(True 或 False)。

    14910
    领券