首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

这两种从DataFrame中选择第一个和最后一个数据的方法有什么不同?

这两种从DataFrame中选择第一个和最后一个数据的方法有以下不同:

  1. 方法一:使用head()函数选择第一个数据
    • 概念:head()函数是pandas库中的一个方法,用于选择DataFrame的前几行数据,默认选择前5行。
    • 优势:简单易用,适用于快速查看DataFrame的开头数据。
    • 应用场景:当需要快速了解DataFrame的数据结构和内容时,可以使用head()函数查看前几行数据。
    • 推荐的腾讯云相关产品:腾讯云数据分析平台TDSQL,详情请参考:https://cloud.tencent.com/product/tdsql
  • 方法二:使用tail()函数选择最后一个数据
    • 概念:tail()函数是pandas库中的一个方法,用于选择DataFrame的后几行数据,默认选择后5行。
    • 优势:简单易用,适用于快速查看DataFrame的结尾数据。
    • 应用场景:当需要快速查看DataFrame的最后几行数据时,可以使用tail()函数。
    • 推荐的腾讯云相关产品:腾讯云数据分析平台TDSQL,详情请参考:https://cloud.tencent.com/product/tdsql

需要注意的是,以上方法适用于pandas库中的DataFrame对象,用于选择数据的开头和结尾。这些方法可以帮助开发人员快速查看DataFrame的数据内容,以便进行后续的数据处理和分析。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【图像分割】开源 | 纽约大学--提供了一个极其简单和实用的方法,从训练数据中自动发现不变性和等方差

learning-invariances 来源: 纽约大学 论文名称:Learning Invariances in Neural Networks 原文作者:Gregory Benton 内容提要 本文引入了Augerino,这是一个可以与标准模型架构无缝部署的框架...,可以单独从训练数据中学习对称性,并提高泛化能力。...Augerino在增强时恢复可解释和准确分布的能力提高了在特定任务的专门基线和基于数据的增强方案上的性能,该方案适用于各种任务,包括分子特性预测、图像分割和分类。...摘要:平移的不变性为卷积神经网络注入了强大的泛化特性。然而,我们通常无法预先知道数据中存在哪些不变性,或者模型在多大程度上应该对给定的对称组保持不变。...我们展示了如何通过参数化增强分布和同时优化网络参数和增强参数的训练损失来学习不变性和等方差。Augerino是第一种不需要验证集或特殊损失函数就能从训练数据中学习神经网络对称性的方法。

45710
  • 删除重复值,不只Excel,Python pandas更行

    第3行和第4行包含相同的用户名,但国家和城市不同。 删除重复值 根据你试图实现的目标,我们可以使用不同的方法删除重复项。最常见的两种情况是:从整个表中删除重复项或从列中查找唯一值。...我们将了解如何使用不同的技术处理这两种情况。 从整个表中删除重复项 Python提供了一个方法.drop_duplicates()可以帮助我们轻松删除重复项!...图3 在上面的代码中,我们选择不传递任何参数,这意味着我们检查所有列是否存在重复项。唯一完全重复的记录是记录#5,它被丢弃了。因此,保留了第一个重复的值。...记录#1和3被删除,因为它们是该列中的第一个重复值。 现在让我们检查原始数据框架。它没有改变!这是因为我们将参数inplace留空,默认情况下其值为False。...pandas Series方法.unique() pandas Series有一个.unique()方法;然而,pandas Dataframe没有此方法。

    6.1K30

    玩转Pandas,让数据处理更easy系列3

    01 回顾 前面介绍了Pandas最重要的两个类:Series和DataFrame,讲述了这两种数据结构常用的属性和操作,比如values,index, columns,索引,Series的增删改查,DataFrame...的增删改查,Series实例填充到Pandas中,请参考: 玩转Pandas,让数据处理更easy系列1 玩转Pandas,让数据处理更easy系列2 02 读入DataFrame实例 读入的方式有很多种...,可以是网络 html 爬虫到数据,可以从excel, csv文件读入的,可以是Json的数据,可以从sql库中读入,pandas提供了很方便的读入这些文件的API,以读入excel,csv文件为例:...此时首先想到读入文件的编码格式,打开excel文件,选择编码为utf-8 读入的第一个参数可以是相对路径,此时直接为文件名,可以是绝对路径。...中文名字叫发生器,这是个什么东东? 它是list吗?我们回顾下发生器的相关知识。 我们大家都熟悉列表,那么创建一个列表有什么问题呢?内存数量总是有限的,列表容量肯定不能超过内存大小。

    1.5K10

    Pandas中高效的选择和替换操作总结

    使用.iloc[]和.loc[]选择行和列 这里我们将介绍如何使用.iloc[] & .loc[] pandas函数从数据中高效地定位和选择行。...这是因为.iloc[]函数利用了索引的顺序,索引已经排序因此速度更快。 我们还可以使用它们来选择列,而不仅仅是行。在下一个示例中,我们将使用这两种方法选择前三列。...所以最好使用.iloc[],因为它更快,除非使用loc[]更容易按名称选择某些列。 替换DF中的值 替换DataFrame中的值是一项非常重要的任务,特别是在数据清理阶段。...这在实际数据中非常常见,但是对于我们来说只需要一个统一的表示就可以了,所以我们需要将其中一个值替换为另一个值。这里有两种方法,第一种是简单地定义我们想要替换的值,然后我们想用什么替换它们。...如果数据很大,需要大量的清理,它将有效的减少数据清理的计算时间,并使pandas代码更快。 最后,我们还可以使用字典替换DataFrame中的单个值和多个值。

    1.2K30

    20个能够有效提高 Pandas数据分析效率的常用函数,附带解释和例子

    Pandas是一个受众广泛的python数据分析库。它提供了许多函数和方法来加快数据分析过程。pandas之所以如此普遍,是因为它的功能强大、灵活简单。...这样得到的累积值在某些情况下意义不大,因为我们更需要不同小组的累计数据。对于这个问题有一个非常简单方便的解决方案,我们可以同时应用groupby和cumsum函数。...Sample Sample方法允许我们从DataFrame中随机选择数据。当我们想从一个分布中选择一个随机样本时,这个函数很有用。...从第一个元素到第二个元素增加了50%,从第二个元素到第三个元素增加了100%。Pct_change函数用于比较元素时间序列中的变化百分比。 df.value_1.pct_change() ? 9....我们有三个不同的城市,在不同的日子进行测量。我们决定将这些日子表示为列中的行。还将有一列显示测量值。

    5.7K30

    数据分析之Pandas VS SQL!

    文章转载自公众号:数据管道 Abstract Pandas是一个开源的Python数据分析库,结合 NumPy 和 Matplotlib 类库,可以在内存中进行高性能的数据清洗、转换、分析及可视化工作...Panel,3维的结构化数据。 Dataframe实例: ? 对于DataFrame,有一些固有属性: ?...宝器带你画重点: subset,为选定的列做数据去重,默认为所有列; keep,可选择{'first', 'last', False},保留重复元素中的第一个、最后一个,或全部删除; inplace ,...这是因为count()将函数应用于每个列,返回每个列中的非空记录的数量。具体如下: ? 还可以同时应用多个函数。例如,假设我们想要查看每个星期中每天的小费金额有什么不同。 SQL: ?...总结: 本文从Pandas里面基本数据结构Dataframe的固定属性开始介绍,对比了做数据分析过程中的一些常用SQL语句的Pandas实现。

    3.2K20

    Pandas中的这3个函数,没想到竟成了我数据处理的主力

    导读 学Pandas有一年多了,用Pandas做数据分析也快一年了,常常在总结梳理一些Pandas中好用的方法。...需要下载该数据集和文中示例源码的可后台回复关键字apply获取下载方式。 01 apply的方法论 在学习apply具体应用之前,有必要首先阐释apply函数的方法论。...说人话就是,apply自身是不带有任何数据处理功能的,但可以用作是对其他数据处理方法的调度器,至于调度什么又为谁而调度呢?这是理解apply的两个核心环节: 调度什么?...应用到DataFrame的每个Series DataFrame是pandas中的核心数据结构,其每一行和每一列都是一个Series数据类型。...从某种角度来讲,这种变换得以实施的前提是该DataFrame的各列元素具有相同的数据类型和相近的业务含义,否则运用相同的数据变换很难保证实际效果。

    2.5K10

    Pandas Sort:你的 Python 数据排序指南

    () 在对值进行排序时组织缺失的数据 使用set to 对DataFrame进行就地排序inplaceTrue 要学习本教程,您需要对Pandas DataFrames有基本的了解,并对从文件中读取数据有一定的了解...行和列都有索引,它是数据在 DataFrame 中位置的数字表示。您可以使用 DataFrame 的索引位置从特定行或列中检索数据。默认情况下,索引号从零开始。您也可以手动分配自己的索引。...DataFrame的轴指的是索引 ( axis=0) 或列 ( axis=1)。您可以使用这两个轴来索引和选择DataFrame 中的数据以及对数据进行排序。...通常,这是使用 Pandas 分析数据的最常见和首选方法,因为它会创建一个新的 DataFrame 而不是修改原始数据。这允许您保留从文件中读取数据时的数据状态。...虽然这两种方法之间有很多相似之处,但通过查看它们之间的差异,可以清楚地知道使用哪一种方法来执行不同的分析任务。

    14.3K00

    (数据科学学习手札06)Python在数据框操作上的总结(初级篇)

    数据框(Dataframe)作为一种十分标准的数据结构,是数据分析中最常用的数据结构,在Python和R中各有对数据框的不同定义和操作。...细心的你会发现虽然我们成功得到了一个数据框按行的随即全排列,但是每一行的行index却依然和打乱前对应的行保持一致,如果我们利用行标号进行遍历循环,那么实际得到的每行和打乱之前没什么区别,因此下面引入一个新的方法...7.数据框的条件筛选 在日常数据分析的工作中,经常会遇到要抽取具有某些限定条件的样本来进行分析,在SQL中我们可以使用Select语句来选择,而在pandas中,也有几种相类似的方法: 方法1: A =...8.数据框元素的去重 df.drop_duplicates()方法: 参数介绍: subset:为选中的列进行去重,默认为所有列 keep:选择对重复元素的处理方式,'first'表示保留第一个,'last...'表示最后一个,False表示全部删除 inplace:默认为False,即返回一个原数据框去重后的新数据框,True则返回原数据框去重后变更的数据框 df.drop_duplicates(subset

    14.3K51

    快速提升效率的6个pandas使用小技巧

    从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...() 这功能对经常在excel和python中切换的分析师来说简直是福音,excel中的数据能一键转化为pandas可读格式。...将strings改为numbers 在pandas中,有两种方法可以将字符串改为数值: astype()方法 to_numeric()方法 先创建一个样本dataframe,看看这两种方法有什么不同。...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...从多个文件中构建一个DataFrame 有时候数据集可能分布在多个excel或者csv文件中,但需要把它读取到一个DataFrame中,这样的需求该如何实现?

    3.3K10

    6个提升效率的pandas小技巧

    从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...这功能对经常在excel和python中切换的分析师来说简直是福音,excel中的数据能一键转化为pandas可读格式。 2....将strings改为numbers 在pandas中,有两种方法可以将字符串改为数值: astype()方法 to_numeric()方法 先创建一个样本dataframe,看看这两种方法有什么不同。...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...从多个文件中构建一个DataFrame 有时候数据集可能分布在多个excel或者csv文件中,但需要把它读取到一个DataFrame中,这样的需求该如何实现?

    2.4K20

    独家 | 是时候和pd.read_csv(), pd.to_csv()说再见了

    因此,在这篇文章中,我们将探索Dask和DataTable,这两个最受数据科学家欢迎的类 Pandas 库。...将 PANDAS DATAFRAME 存储到 CSV 所需的时间 目标是从给定的 Pandas DataFrame 生成 CSV 文件。对于 Pandas,我们已经知道df.to_csv()方法。...出于实验目的,我在 Python 中生成了一个随机数据集,其中包含可变行和三十列——包括字符串、浮点数和整数数据类型。 2....在这两种情况下,Datatable 生成Pandas 中的 DataFrame 所需的时间最少,提供高达 4 到 5 倍的加速——使其成为迄今为止最好的选择。...喜欢数据科学和人工智能相关方向。欢迎不同观点和想法的交流与碰撞,对未知充满好奇,对热爱充满坚持。

    1.5K30

    python对100G以上的数据进行排序,都有什么好的方法呢

    () 在对值进行排序时组织缺失的数据 使用set to 对DataFrame进行就地排序inplaceTrue 要学习本教程,您需要对Pandas DataFrames有基本的了解,并对从文件中读取数据有一定的了解...行和列都有索引,它是数据在 DataFrame 中位置的数字表示。您可以使用 DataFrame 的索引位置从特定行或列中检索数据。默认情况下,索引号从零开始。您也可以手动分配自己的索引。...DataFrame的轴指的是索引 ( axis=0) 或列 ( axis=1)。您可以使用这两个轴来索引和选择DataFrame 中的数据以及对数据进行排序。...通常,这是使用 Pandas 分析数据的最常见和首选方法,因为它会创建一个新的 DataFrame 而不是修改原始数据。这允许您保留从文件中读取数据时的数据状态。...虽然这两种方法之间有很多相似之处,但通过查看它们之间的差异,可以清楚地知道使用哪一种方法来执行不同的分析任务。

    10K30

    使用Python将多个工作表保存到一个Excel文件中

    我们创建了两个数据框架,第一个是20行10列的随机数;第二个是10行1列的随机数。...这两种方法的想法基本相同:创建一个ExcelWriter,然后将其传递到df.to_excel()中,用于将数据框架保存到Excel文件中。这两种方法在语法上略有不同,但工作方式相同。...——将两个数据框架保存到一个Excel文件中。...然而,其运作机制是完全不同的。 区别 首先,由于方法1中的with块,所有数据框架必须在同一作用域内。这意味着如果你的数据框架不在当前作用域内,则必须首先将其引入。...而对于方法2,数据框架可以在不同的作用域内,并且仍然可以工作。这在代码复杂时特别有用。

    6.1K10

    从零开始,教初学者如何征战全球最大机器学习竞赛社区Kaggle竞赛

    在做完一番研究后,我认为下一步最优的选择是进军 Kaggle,它是谷歌旗下的一个预测模型竞赛平台。没什么比自己动手进行实践更好了!...如何构建我们的模型 决策树介绍 其基本思想是很简单的,当学习(拟合)训练数据的时候,回归树搜索所有独立变量和每个独立变量的所有值,以寻找能将数据最佳地分割为两组的变量和值(从数学角度来说,树总是选择能最小化两个节点的加权平均方差的分割...决策树过拟合 假定我们将一个回归树拟合到训练数据中。这个树将是什么结构?实际上,它将持续分割直到每个叶节点只有一个观察数据(无法再继续分离)。...这个方法非常简单,让我们假设一个分类变量有 n 个可能值。该列被分为 n 个列,每一列对应一个原始值(相当于对每个原始值的『is_value?』)。...说明 在将训练集和测试集分别加载进 DataFrame 之后,我保存了目标变量,并在 DataFrame 中删除它(因为我只想保留 DataFrame 中的独立变量和特征)。

    860100

    pandas | 如何在DataFrame中通过索引高效获取数据?

    今天是pandas数据处理专题第三篇文章,我们来聊聊DataFrame中的索引。 上篇文章当中我们简单介绍了一下DataFrame这个数据结构的一些常见的用法,从整体上大概了解了一下这个数据结构。...数据准备 上一篇文章当中我们了解了DataFrame可以看成是一系列Series组合的dict,所以我们想要查询表中的某一列,也就是查询某一个Series,我们只需要像是dict一样传入key值就可以查找了...这两种方法都可以查询某一行,只是查询的参数不同,本质上没有高下之分,大家可以自由选择。...loc 首先我们来介绍loc,loc方法可以根据传入的行索引查找对应的行数据。注意,这里说的是行索引,而不是行号,它们之间是有区分的。...说白了我们可以选择我们想要的行中的字段。 ? 列索引也可以切片,并且可以组合在一起切片: ? iloc iloc从名字上来看就知道用法应该和loc不会差太大,实际上也的确如此。

    13.6K10

    用Python玩转统计数据:取样、计算相关性、拆分训练模型和测试

    准备 要实践本技巧,你需要PyMongo、pandas和NumPy。其他没有什么要准备的。 2. 怎么做 有两种做法:确定一个抽样的比例(比如说,20%),或者确定要取出的记录条数。...我们还使用了DataFrame的.append(...)方法:有一个DataFrame对象(例子中的sample),将另一个DataFrame附加到这一个已有的记录后面。...准备 要实践本技巧,你需要pandas、SQLAlchemy和NumPy。其他没有什么要准备的。 2. 怎么做 我们从PostgreSQL数据库读出数据,存到DataFrame里。...原理 我们从指定划分数据的比例与存储数据的位置开始:两个存放训练集和测试集的文件。 我们希望随机选择测试数据。这里,我们使用NumPy的伪随机数生成器。....在每个种类中,我们有两个数据集:一个包含因变量,另一个包含自变量。

    2.4K20

    6个提升效率的pandas小技巧

    从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...这功能对经常在excel和python中切换的分析师来说简直是福音,excel中的数据能一键转化为pandas可读格式。 2....将strings改为numbers 在pandas中,有两种方法可以将字符串改为数值: astype()方法 to_numeric()方法 先创建一个样本dataframe,看看这两种方法有什么不同。...对连续数据进行离散化处理 在数据准备过程中,常常会组合或者转换现有特征以创建一个新的特征,其中将连续数据离散化是非常重要的特征转化方式,也就是将数值变成类别特征。...从多个文件中构建一个DataFrame 有时候数据集可能分布在多个excel或者csv文件中,但需要把它读取到一个DataFrame中,这样的需求该如何实现?

    2.9K20

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    3、导入表格 默认情况下,文件中的第一个工作表将按原样导入到数据框中。 使用sheet_name参数,可以明确要导入的工作表。文件中的第一个表默认值为0。...二、查看的数据的属性 现在我们有了DataFrame,可以从多个角度查看数据了。Pandas有很多我们可以使用的功能,接下来将使用其中一些来看下我们的数据集。...1、从“头”到“脚” 查看第一行或最后五行。默认值为5,也可以自定义参数。 ? 2、查看特定列的数据 ? 3、查看所有列的名字 ? 4、查看信息 查看DataFrame的数据属性总结: ?...Python提供了许多不同的方法来对DataFrame进行分割,我们将使用它们中的几个来了解它是如何工作的。...3、查看特定行 这里使用的方法是loc函数,其中我们可以指定以冒号分隔的起始行和结束行。注意,索引从0开始而不是1。 ? 4、同时分割行和列 ? 5、在某一列中筛选 ? 6、筛选多种数值 ?

    8.4K30
    领券