首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

这个n-body问题是O(n^2)还是O(n log n)?

n-body问题是一个计算物理学中的经典问题,用于模拟n个物体之间的相互作用和运动。在计算复杂度方面,n-body问题的计算复杂度取决于所采用的算法。

一种常见的解决n-body问题的算法是暴力求解法,也称为直接求解法。该算法通过计算每对物体之间的相互作用力,然后根据牛顿定律更新物体的位置和速度。在这种算法下,每个物体都需要与其他n-1个物体进行相互作用的计算,因此总的计算复杂度为O(n^2)。

另一种高效的解决n-body问题的算法是基于分治思想的快速多极子算法(Fast Multipole Method,FMM)。该算法通过将物体分组并近似计算远距离物体之间的相互作用,从而减少了计算量。在这种算法下,每个物体只需要与一部分物体进行相互作用的计算,因此总的计算复杂度为O(n log n)。

综上所述,n-body问题的计算复杂度可以是O(n^2)或O(n log n),具体取决于所采用的算法。在实际应用中,为了提高计算效率,推荐使用基于分治思想的快速多极子算法(FMM)来解决n-body问题。

腾讯云提供了弹性计算服务(Elastic Compute Service,ECS)和弹性容器实例(Elastic Container Instance,ECI)等产品,可以用于部署和运行计算密集型任务,包括n-body问题的求解。您可以通过以下链接了解更多关于腾讯云弹性计算服务的信息:

  • 弹性计算服务(ECS):https://cloud.tencent.com/product/ecs
  • 弹性容器实例(ECI):https://cloud.tencent.com/product/eci
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

《数据结构与算法》O(3N)=O(N)?

数据类型 是一组值的集合和定义在这个集合上的操作的总称。...在学习算法效率的时候一般会把O(3N)≈O(N),N的常数倍都直接约等于O(N)。这也是约等于,不是完全相等。实际编程设计时特别是在一些效率要求较高的程序设计一定要考虑进去,不能约等于。...在高并发的请求下,O(3N)和O(N)是有着天壤之别的。 我在工作中遇到的一个实例,差点背了事故。...一个高并发的场景下(qps在5k左右),我写了一个O(3N)的程序,测试时逻辑没问题,结果没问题,没有对该场景进行高并发压测,就上线了。...错误的把O(3N)=O(N)的算法上线了。把算法优化为O(N)之后,经过一番压力测试完全没问题。这次事件对我一个很大的启示是,高并发的场景下,O(3N)≠O(N),一定不能等于。

53640
  • 排序与突破O(n2)

    , reg, start2, end2); int k = start; while (start1 <= end1 && start2 <= end2) reg[k++...,很容易懂,利用二叉树这种结构: Heapsort visualization (墙) 然后再看这个,很清晰: ?...突破 O(n2) 排序能突破O(N^2)的界,可以用逆序数来理解,假设我们要从小到大排序,一个数组中取两个元素如果前面比后面大,则为一个逆序,容易看出排序的本质就是消除逆序数,可以证明对于随机数组,逆序数是...O(N^2)的,而如果采用“交换相邻元素”的办法来消除逆序,每次正好只消除一个,因此必须执行O(N^2)的交换次数,这就是为啥冒泡、插入等算法只能到平方级别的原因。...反过来,基于交换元素的排序要想突破这个下界,必须执行一些比较,交换相隔比较远的元素,使得一次交换能消除一个以上的逆序,归并、快排、堆排等等算法都是交换比较远的元素,只不过规则各不同罢了

    42620

    时间复杂度o(1), o(n), o(logn), o(nlogn)

    1、时间复杂度o(1), o(n), o(logn), o(nlogn)。算法时间复杂度的时候有说o(1), o(n), o(logn), o(nlogn),这是算法的时空复杂度的表示。...O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。 2、时间复杂度为O(1)。...再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。 比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。...4、时间复杂度为O(logn)。 当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。...就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。 归并排序就是O(nlogn)的时间复杂度。

    1.4K10

    算法复杂度O(1),O(n),O(logn),O(nlogn)的含义

    相信很多开发的同伴们在研究算法、排序的时候经常会碰到O(1),O(n),O(logn),O(nlogn)这些复杂度,看到这里就会有个疑惑,这个O(N)到底代表什么呢?带着好奇开始今天文章。...//循环遍历N次即可得到结果 count = 0; for(int i = 0;i < 10 ; i ++){ count ++; } 时间复杂度O(n^2)—平方阶, 就代表数据量增大n倍时,耗时增大...(n-1) 时间复杂度O(logn)—对数阶,当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。...这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。...O(nlogn)<O(n2)<O(n3)<O(2n)//2n方<O(n!)

    6.8K30

    经典 O(n²)比较类排序算法

    一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。 这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。...(ps:都已经是正序了,还要你冒泡何用) 最坏时间复杂度: 数据是倒序的,我们需要进行 n 次冒泡操作,所以最坏情况时间复杂度为 O(n2)。...总结 这三种时间复杂度为 O(n²) 的排序算法中,冒泡排序、选择排序,可能就纯粹停留在理论的层面了,学习的目的也只是为了开拓思维,实际开发中应用并不多,但是插入排序还是挺有用的。...但是在大规模数据排序的时候,这个时间复杂度还是稍微有点高,所以我们更倾向于用下一节要讲的时间复杂度为 O(nlogn) 的排序算法。 ?...问题是:插入排序和冒泡排序时间复杂度相同,都是 O(n²),实际开发中更倾向于插入排序而不是冒泡排序

    58020

    OSPF技术连载22:OSPF 路径选择 O > O IA > N1 > E1 > N2 > E2

    这个列表可以帮助我们理解在选择路径时,OSPF是如何综合考虑路径类型和成本的。优选路径列表是O > O IA > N1 > E1 > N2 > E2。...NSSA 类型 2 (N2)第五 在特殊区域内连接外部网络,仅考虑区域内成本。 外部类型 2 (E2)第六 仅考虑区域内成本,用于简化路由计算。...NSSA Type 2 (N2)NSSA Type 2N2)路径选择与N1路径选择类似,但适用于NSSA区域内部。...在这种情况下,N2路径选择仅考虑区域内链路的成本,不考虑到达NSSA内外部网络的成本。N2路径选择适用于那些需要在NSSA区域内连接外部网络的情况。...路径选择的实际应用图片在这个示意图中,我们有一个更复杂的网络拓扑,包括多个区域(Area 0、Area 1、Area 2和Area 3)以及多个路由器(R1到R6)。

    56330

    OSPF技术连载22:OSPF 路径选择 O > O IA > N1 > E1 > N2 > E2

    这个列表可以帮助我们理解在选择路径时,OSPF是如何综合考虑路径类型和成本的。 优选路径列表是O > O IA > N1 > E1 > N2 > E2。...NSSA 类型 2 (N2) 第五 在特殊区域内连接外部网络,仅考虑区域内成本。 外部类型 2 (E2) 第六 仅考虑区域内成本,用于简化路由计算。...NSSA Type 2 (N2) NSSA Type 2N2)路径选择与N1路径选择类似,但适用于NSSA区域内部。...在这种情况下,N2路径选择仅考虑区域内链路的成本,不考虑到达NSSA内外部网络的成本。 N2路径选择适用于那些需要在NSSA区域内连接外部网络的情况。...路径选择的实际应用 在这个示意图中,我们有一个更复杂的网络拓扑,包括多个区域(Area 0、Area 1、Area 2和Area 3)以及多个路由器(R1到R6)。

    28741

    使用 Python 可视化 On

    常用的时间复杂度类 On) 表示输入大小和执行时间之间的线性关联。 定义 计算机科学中的算法复杂性是对资源(例如时间和空间利用率)的评估,这些资源是根据其输入大小操作算法所需的。...用于描述算法复杂性的主要表示法是大O表示法(On))。...其中“n”表示迭代次数。 在 On) 时间复杂度中,随着输入大小 'n' 的增加,执行时间成比例增长。随着“n”的增加,迭代次数和完成循环所需的时间将成比例增加。...假设算法表现出 On) 的时间复杂度,我们可以近似地认为,在绘制图表时,输入大小和执行持续时间之间将存在几乎直线的相关性。...方法 2:绘制运算与输入大小的关系 例 import matplotlib.pyplot as plt def algo_ops(n):     ops = 0     sum = 0     for

    21010

    【转】算法中时间复杂度概括——o(1)、o(n)、o(logn)、o(nlogn)

    在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度。这里进行归纳一下它们代表的含义:这是算法的时空复杂度的表示。...O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。 比如时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。...再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。...再比如O(logn),当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。...这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。 O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。

    1.2K10

    常见算法的时间复杂度 Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…

    比如:Ο(1)、Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)、Ο(n3)…Ο(2n)、Ο(n!)等所代表的意思! 我在面试的时候,就发现有人连 O(1) 代表什么意思都搞不清楚!...O(logn) 当数据增大 n 倍时,耗时增大 logn 倍(这里的 log 是以 2 为底的,比如,当数据增大 256 倍时,耗时只增大 8 倍,是比线性还要低的时间复杂度)。...O(nlogn) O(nlogn) 就是 n 乘以 logn,当数据增大 256 倍时,耗时增大 256*8=2048 倍。这个复杂度高于线性低于平方。归并排序就是 O(nlogn) 的时间复杂度。...常见的时间复杂度有:常数阶 O(1),对数阶 O(log2n),线性阶 O(n),线性对数阶 O(nlog2n),平方阶 O(n2),立方阶 O(n3),…,k 次方阶 O(nk),指数阶 O(2n)...常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)。 ? 上图是常见的算法时间复杂度举例。

    8.3K21

    Manacher算法 O(n)求最长回文串

    Sample Input aaaa abab Sample Output 4 3 manacher算法: 定义数组p[i]表示以i为中心的(包含i这个字符)回文串半径长 将字符串s从前扫到后for...(int i=0;i<strlen(s);++i)来计算p[i],则最大的p[i]就是最长回文串长度,则问题是如何去求p[i]?...k]左右延伸,即while(s[i+k+p[i+k]] == s[i+k-p[i+k]])++p[i+k] 2.i+k这个位置被前面以位置i为中心的回文串包含,即maxlen>i+k 这样的话p[i...+k]就不是从1开始 由于回文串的性质,可知i+k这个位置关于i与i-k对称, 所以p[i+k]分为以下3种情况得出 //黑色是i的回文串范围,蓝色是i-k的回文串范围, ?...len+2]要插入不同的字符          s[0]='*';//s[0]='*',s[len+len+2]='\0',防止在while时p[i]越界 for(int i=2;i<2*len

    58250

    O(n)的算法居然超时了,此时的n究竟是多大?

    如果写出了一个O(n)的算法 ,其实可以估算出来n是多大的时候算法的执行时间就会超过1s了。 如果n的规模已经足够让O(n)的算法运行时间超过了1s,就应该考虑log(n)的解法了。...例如1 + 2 = 3,cpu要执行四次才能完整这个操作,步骤一:把1放入寄存机,步骤二:把2放入寄存器,步骤三:做加法,步骤四:保存3。...引用算法4里面的一段话: 火箭科学家需要大致知道一枚试射火箭的着陆点是在大海里还是在城市中; 医学研究者需要知道一次药物测试是会杀死还是会治愈实验对象; 所以「任何开发计算机程序员的软件工程师都应该能够估计这个程序的运行时间是一秒钟还是一年...以下以C++代码为例: 测试硬件:2015年MacPro,CPU配置:2.7 GHz Dual-Core Intel Core i5 实现三个函数,时间复杂度分别是 O(n) , O(n^2), O(nlogn...O(n)的算法,1s内大概计算机可以运行 5 * (10^8)次计算,可以推测一下O(n^2) 的算法应该1s可以处理的数量级的规模是 5 * (10^8)开根号,实验数据如下。 ?

    1.2K30
    领券