首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

连接pandas数据框中的两列

可以使用pandas库中的concat函数或者merge函数来实现。

  1. 使用concat函数连接两列: concat函数可以将两个数据框按照列的方向进行连接,可以选择按照行索引或者列索引进行连接。
  2. 使用concat函数连接两列: concat函数可以将两个数据框按照列的方向进行连接,可以选择按照行索引或者列索引进行连接。
  3. 输出结果:
  4. 输出结果:
  5. 在上述示例中,我们创建了两个数据框df1df2,然后使用concat函数将df1的列Adf2的列C连接在一起,得到了新的数据框result
  6. 使用merge函数连接两列: merge函数可以根据指定的列进行连接,类似于SQL中的JOIN操作。
  7. 使用merge函数连接两列: merge函数可以根据指定的列进行连接,类似于SQL中的JOIN操作。
  8. 输出结果:
  9. 输出结果:
  10. 在上述示例中,我们创建了两个数据框df1df2,然后使用merge函数将df1的列Adf2的列C连接在一起,得到了新的数据框result

以上是连接pandas数据框中的两列的方法,根据具体的需求选择合适的方法进行操作。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Pandas实现一数据分隔为

分割成一个包含个元素列表 对于一个已知分隔符简单分割(例如,用破折号分割或用空格分割).str.split() 方法就足够了 。 它在字符串(系列)上运行,并返回列表(系列)。...,每包含列表相应元素 下面来看下如何从:分割成一个包含个元素列表至分割成,每包含列表相应元素。..., B1] A1 B1 1 A2-B2 [A2, B2] A2 B2 补充知识:pandas某一每一行拆分成多行方法 在处理数据过程,常会遇到将一条数据拆分成多条,比如一个人地址信息,可能有多条地址...在pandas如何对DataFrame进行相关操作呢,经查阅相关资料,发现了一个简单办法, info.drop([‘city’], axis=1).join(info[‘city’].str.split...以上这篇Pandas实现一数据分隔为就是小编分享给大家全部内容了,希望能给大家一个参考。

6.9K10

【R语言】数据排序

我相信大家经常会使用Excel对数据进行排序。有时候我们会按照个条件来对数据排序。假设我们手上有下面这套数据,9个人,第二(score)为他们考试成绩,第三(code)为对应评级。...主要用是Rorder这个函数。...#读入文件,data.txt存放数据为以上表格展示数据 file=read.table(file="data.txt",header=T,sep="\t") #先按照code升序,再按照Score...,只需要前面加个负号就可以了 View(file[order(file$Code,-file$Score),]) 下面是按照code升序,然后再按score降序排列结果,是不是跟Excel处理结果一样...在R里面我们还可以指定code按照一定顺序来排列 #按照指定因子顺序排序,先good,在excellent,最后poor file$Code <- factor(file$Code , levels

2.3K20
  • pandas合并和连接多个数据

    当需要对多个数据集合并处理时,我们就需要对多个数据进行连接操作,在pandas,提供了以下多种实现方式 1. concat concat函数可以在行和个水平上灵活合并多个数据,基本用法如下...,对于子数据没有的,以NaN进行填充。...在SQL数据,每个数据表有一个主键,称之为key, 通过比较主键内容,将数据表进行连接,基本用法如下 >>> a = pd.DataFrame({'name':['Rose', 'Andy',...key, 然后比较数据key对应元素,取交集元素作为合并对象。...overlap标签名时,用on参数指定key就不行了,此时可以用left_on和right_on分别指定数据key,用法如下 >>> a = pd.DataFrame({'student_name

    1.9K20

    seaborn可视化数据多个元素

    seaborn提供了一个快速展示数据元素分布和相互关系函数,即pairplot函数,该函数会自动选取数据中值为数字元素,通过方阵形式展现其分布和关系,其中对角线用于展示各个元素分布情况...,剩余空间则展示每元素之间关系,基本用法如下 >>> df = pd.read_csv("penguins.csv") >>> sns.pairplot(df) >>> plt.show()...函数自动选了数据3元素进行可视化,对角线上,以直方图形式展示每元素分布,而关于对角线堆成上,下半角则用于可视化之间关系,默认可视化形式是散点图,该函数常用参数有以下几个 ###...#### 3、 x_vars和y_vars 默认情况下,程序会对数据中所有的数值进行可视化,通过x_vars和y_vars可以用列名称来指定我们需要可视化,用法如下 >>> sns.pairplot...通过pairpplot函数,可以同时展示数据多个数值型元素关系,在快速探究一组数据分布时,非常好用。

    5.2K31

    对比Excel,Python pandas删除数据框架

    标签:Python与Excel,pandas 删除也是Excel常用操作之一,可以通过功能区或者快捷菜单命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行一些方法,删除与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除数据框架,仍然使用前面给出“用户.xlsx”数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除。...如果要覆盖原始数据框架,则要包含参数inplace=True。 图2 del方法 del是Python一个关键字,可用于删除对象。我们可以使用它从数据框架删除。...实际上我们没有删除,而是创建了一个新数据框架,其中只包含用户姓名、城市和性别,有效地“删除”了其他。然后,我们将新创建数据框架赋值给原始数据框架以完成“删除操作”。注意代码双方括号。

    7.2K20

    Pandas更改数据类型【方法总结】

    例如,上面的例子,如何将2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每类型?...理想情况下,希望以动态方式做到这一点,因为可以有数百个,明确指定哪些是哪种类型太麻烦。可以假定每都包含相同类型值。...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型DataFrame转换为更具体类型。...例如,用对象类型创建一个DataFrame,其中一个保存整数,另一个保存整数字符串: >>> df = pd.DataFrame({'a': [7, 1, 5], 'b': ['3','2','1...astype强制转换 如果试图强制将转换为整数类型,可以使用df.astype(int)。 示例如下: ? ?

    20.3K30

    pandasloc和iloc_pandas获取指定数据行和

    大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到种方法:iloc和loc。...读取第二行值 (2)读取第二行值 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过行、名称或标签来索引 iloc:通过行、索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...(1)读取第二行值 # 索引第二行值,行标签是“1” data1 = data.loc[1] 结果: 备注: #下面种语法效果相同 data.loc[1] == data.loc...3, 2:4]第4行、第5取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    8.9K21

    【Python】基于某些删除数据重复值

    # coding: utf-8 import os #导入设置路径库 import pandas as pd #导入数据处理库 import numpy as np #...导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于多组合删除数据重复值') #把路径改为数据存放路径 name = pd.read_csv('name.csv...原始数据只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据。 想要根据更多数去重,可以在subset添加。...从上文可以发现,在Python中用drop_duplicates函数可以轻松地对数据进行去重。 但是对于中元素顺序相反数据去重,drop_duplicates函数无能为力。...如需处理这种类型数据去重问题,参见本公众号文章【Python】基于多组合删除数据重复值。 -end-

    19.5K31

    Excel(表)数据对比常用方法

    Excel数据差异对比,方法非常多,比如简单直接用等式处理,到使用Excel2016新功能Power Query(Excel2010或Excel2013可到微软官方下载相应插件...一、简单直接等式对比 简单直接等式对比进适用于数据排列位置顺序完全一致情况,如下图所示: 二、使用Vlookup函数进行数据匹配对比 通过vlookup函数法可以实现从一个数据读取另一数据...vlookup函数除了适用于对比,还可以用于表间数据对比,如下图所示: 三、使用数据透视进行数据对比 对于大规模数据对比来说,数据透视法非常好用,具体使用方法也很简单,即将2数据合并后...比如,有个表数据要天天做对比,找到差异地方,原来用Excel做虽然也不复杂,但要频繁对比,就很麻烦了,因此,可以考虑使用Power Query来实现直接刷新自动对比。...1、将需要对比2个表数据加载到Power Query 2、以完全外部方式合并查询 3、展开合并数据 4、添加差异比对 5、按需要筛选去掉无差异部分 6、按需要调整相应就可以将差异结果返回

    14.6K20

    Pandas DataFrame 连接和交叉连接

    在 SQL 中经常会使用JOIN操作来组合个或多个表。有很多种不同种类 JOINS操作,并且pandas 也提供了这些方式实现来轻松组合 Series 或 DataFrame。...自连接 顾名思义,自连接是将 DataFrame 连接到自己连接。也就是说连接左边和右边都是同一个DataFrame 。自连接通常用于查询分层数据集或比较同一 DataFrame 行。...df_manager2 输出与 df_manager 相同。 交叉连接 交叉连接也是一种连接类型,可以生成个或多个表中行笛卡尔积。它将第一个表行与第二个表每一行组合在一起。...这个示例数据个 DataFrame 都没有索引所以使用 pandas.merge() 函数很方便。...总结 在本文中,介绍了如何在Pandas中使用连接操作,以及它们是如何在 Pandas DataFrame 执行。这是一篇非常简单入门文章,希望在你处理数据时候有所帮助。

    4.2K20

    【Python】基于多组合删除数据重复值

    最近公司在做关联图谱项目,想挖掘团伙犯罪。在准备关系数据时需要根据组合删除数据重复值,中元素顺序可能是相反。...本文介绍一句语句解决多组合删除数据重复值问题。 一、举一个小例子 在Python中有一个包含3数据,希望根据name1和name2组合(在顺序不一样)消除重复项。...二、基于删除数据重复值 1 加载数据 # coding: utf-8 import os #导入设置路径库 import pandas as pd #导入数据处理库...打印原始数据行数: print(df.shape) 得到结果: (130, 3) 由于每行中有一行是重复,希望数据处理后得到一个65行3去重数据。...从上图可以看出用set替换frozense会报不可哈希错误。 三、把代码推广到多 解决多组合删除数据重复值问题,只要把代码代码变成多即可。

    14.7K30

    用过Excel,就会获取pandas数据框架值、行和

    在Python数据存储在计算机内存(即,用户不能直接看到),幸运pandas库提供了获取值、行和简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例为4行5。 图3 使用pandas获取 有几种方法可以在pandas获取。...在pandas,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和交集。...想想如何在Excel引用单元格,例如单元格“C10”或单元格区域“C10:E20”。以下种方法都遵循这种行和思想。 方括号表示法 使用方括号表示法,语法如下:df[列名][行索引]。...图9 要获得第2行和第4行,以及其中用户姓名、性别和年龄,可以将行和列作为个列表传递,如下图所示。 图10 记住,df[['用户姓名','年龄','性别']]返回一个只有三数据框架。

    19.1K60

    Pandas如何查找某中最大值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找某中最大值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    34610

    【说站】excel筛选数据重复数据并排序

    “条件格式”这个功能来筛选对比数据中心重复值,并将数据相同、重复数据按规则进行排序方便选择,甚至是删除。...比如上图F、G数据,我们肉眼观察的话数据有好几个相同数据,如果要将这数据重复数据筛选出来的话,我们可以进行如下操作: 第一步、选择重复值 1、将这数据选中,用鼠标框选即可; 2...,我这里按照默认设置); 4、上一步设置完,点击确定,我们可以看到我们数据变成如下图所示: 红色显示部分就表示数据重复几个数据。...第二步、将重复值进行排序 经过上面的步骤,我们将数据重复值选出来了,但数据排列顺序有点乱,我们可以做如下设置: 1、选中F,然后点击菜单栏“排序”》“自定义排序”,选择“以当前选定区域排序”...2、选中G,做上述同样排序设置,最后排序好结果如下图: 经过上面的几个步骤,我们可以看到本来杂乱无章数据现在就一目了然了,数据重复数据进行了颜色区分排列到了上面,不相同数据也按照一定顺序进行了排列

    8.5K20
    领券