高斯消元(Gaussian Elimination)是一种用于解线性方程组的算法,通过逐步的行变换来将方程组转化为简化的行阶梯形式,从而求解方程组的解。
在C语言中,可以使用算法来计算欧拉函数(Euler's Totient Function)。欧拉函数,也被称为φ函数,用于计算小于或等于给定数字n的正整数中与n互质的数的个数。
我的第一篇谈到具体学科的博客,还是献给我最钟爱的数学。 个人比较喜欢离散数学,并非因为曲高和寡,而是因为数学分析、概率论、拓扑学、泛函之类的高手实在太多。而离散数学更为抽象,抽象到抽象代数直接以抽象二字命名,愿意去学习的人自然就少了,那么个人闲聊的时候忽悠的空间就会比较大,夸张夸张也没多少人看出自己其实是不学无术的。也正因为如此,喜欢离散数学,离散数学中最喜欢的就算是抽象代数了。 数学是什么 从人类原始社会起,人类与地斗,与天斗,物质资源极端匮乏,长期以往,人类对自己所控制的物质资源有了个量
中 , 如果 定义了 一个 “乘法” 运算 , 满足以下 四个 性质 , 那么 该 非空集合
有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的naïve ,那怎么做?
单位元:集合A的一个元素a称为运算★的单位元,如果对A的任意元素 x 都由 x ★ a = x, 且a ★ x = x。
分析: C(10, 3) = C(10, 2) * 8 / 3 = C(10, 1) * 9 * 8 / (3 * 2) = C(10, 0) * 10 * 9 * 8 / (3 * 2 * 1) = 1 * 10 * 9 * 8 / (3 * 2 * 1) = 120
大学期间,ACM队队员必须要学好的课程有: l C/C++两种语言 l 高等数学 l 线性代数 l 数据结构 l 离散数学 l 数据库原理 l 操作系统原理 l 计算机组成原理 l 人工智能 l 编译原理 l 算法设计与分析 除此之外,我希望你们能掌握一些其它的知识,因为知识都是相互联系,触类旁通的。
算法工程师成长计划 近年来,算法行业异常火爆,算法工程师年薪一般20万~100 万。越来越多的人学习算法,甚至很多非专业的人也参加培训或者自学,想转到算法行业。尽管如此,算法工程师仍然面临100万的人才缺口。缺人、急需,算法工程师成为众多企业猎头争抢的对象。 计算机的终极是人工智能,而人工智能的核心是算法,算法已经渗透到了包括互联网、商业、金融业、航空、军事等各个社会领域。可以说,算法正在改变着这个世界。 下面说说如何成为一个算法工程师,万丈高楼平地起,尽管招聘启事的算法工程师都要求会机器学习,或数据挖
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013
友情提示: Latex加载稍慢,请耐心等待 什么是逆元? 若x满足 我们称x是a在 意义下的逆元 逆元的基本解法 https://loj.ac/problem/110 1.快速幂 当p为素数 根据费马小定理 带入快速幂就好啦 时间复杂度: 1 #include<cstdio> 2 #define LL long long 3 using namespace std; 4 const LL MAXN=200000001; 5 LL n,mod; 6 LL f
辗转相除法又名欧几里得算法,是求最大公约数的一种算法,英文缩写是gcd。所以如果你在大牛的代码或者是书上看到gcd,要注意,这不是某某党,而是指的辗转相除法。
mod 1234 (3)计算 gcd(57,93),并找出整数s和t,使得57s+93t=gcd(57,93) (4)求解下列同余方程组
AI摘要:本文介绍了如何使用中国剩余定理(CRT)高效地进行RSA解密。首先,概述了RSA加密的基本原理,包括密钥对的生成、加密和解密过程。接着,详细解释了中国剩余定理的概念及其在RSA解密中的应用,包括计算模$p$和模$q$下的部分明文、求解$q$的模$p$的逆元$q_{\text{inv}}$,以及如何合并这些结果来得到最终的明文$m$。文章还提供了一个完整的Python实现,展示了如何计算模数$n$、使用inverse函数计算逆元、使用快速幂算法计算部分明文,以及如何合并结果得到明文。通过CRT,RSA解密过程在计算上变得更加高效,因为它允许在较小的模数下进行计算。 使用中国剩余定理(CRT)进行RSA解密
3.编写init函数,用于初始化FAC和INV数组。在该函数中先将FAC0和INV0赋值为1,然后使用循环计算FACi(i从1到LIMIT)的值,并使用费马小定理倒推计算出INVi(i从LIMIT到2)的值。
初等代数是古老算术的推广和发展,在初等代数中开始用变量代替具体的数字,它的中心是解方程
以下链接很好的解释了群环域的概念. http://sparkandshine.net/algebraic-structure-primer-group-ring-field-vector-space/
乘法逆元 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: Menci 提交提交记录统计测试数据 题目描述 这是一道模板题。 给定正整数 n nn 与 p pp,求 1∼n 1 \sim n1∼n 中的所有数在模 p pp 意义下的乘法逆元。 输入格式 一行两个正整数 n nn 与 p pp 输出格式 n nn 行,第 i ii 行一个正整数,表示 i ii 在模 p pp 意义下的乘法逆元。 样例 样例输入 10 13 样例输出 1 7 9 10
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exg
本文链接: [https://blog.openacid.com/storage/ec-2/]
卢卡斯定理: 求 C m n m o d p C_m^n~mod~p Cmn mod p 设 m = a 0 p 0 + a 1 p 1 + ⋯ + a k p k m={a_0}^{p_0}+{a_1}^{p_1}+\cdots+{a_k}^{p_k} m=a0p0+a1p1+⋯+akpk 设 n = b 0 p 0 + b 1 p 1 + ⋯ + b k p k n={b_0}^{p_0}+{b_1}^{p_1}+\cdots+{b_k}^{p_k} n=b0p0+b1p1+⋯+bkpk 则 C
欧几里得算法是用来求解两个不全为0的非负整数m和n的最大公约数的一个高效且简单的算法。该算法来自于欧几里得的《几何原本》。数学公式表达如下:
思路:从m个数中选择n-1个不同的数。由于里面的元素只有一个重复,而且重复的元素不能是最大值,那么就要从剩下的n-2个数中选择出一个最大值,下标为i。对于剩下的n-3个数,选x个排在最大值的左侧,这样的话,总共的情况数就是
思路分析:n,d已知的,我们第一步要生成两个质数p,q,这两个质数满足n=pq,且d与(p-1)(q-1)互质,那么我们先找到这两个质数:
N wizards are attending a meeting. Everyone has his own magic wand. N magic wands was put in a line, numbered from 1 to n(Wand_i owned by wizard_i). After the meeting, n wizards will take a wand one by one in the order of 1 to n. A boring wizard decided to reorder the wands. He is wondering how many ways to reorder the wands so that at least k wizards can get his own wand.
此处所谓求逆运算,是指在模乘群里求逆。 第一节里提到互质的两个定义: (1)p,q两整数互质指p,q的最大公约数为1。 (2)p.q两整数互质指存在整数a,b,使得ap+bq=1。 只要明白了欧几里得算法,很容易就可以求出两整数的最大公约数,而这是一个小学时候就学习到的算法。这个算法有个可能让我们更熟悉的名字,叫辗转相除法。 我经常搞不清楚被除数和除数,不知道会不会有人和我一样。所以我要先在这里写明一下,防止混淆,一个除法,除号前的叫被除数,除号后的脚除数。 单次除法,X=m*Y
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4006 题意:小明在原点(0,0),一共可以走n步,他朋友在(m,
其实网上已经有不少从数学原理的角度去解说Winograd[1,2,3,4,5,6,10]这个算法的文章了,为什么我还要写这篇文章。
根据裴蜀定理,若gcd(a,b)=1则gcd是a,b两个数线性组合的最小值,其他组合都是gcd的倍数。
求一个 N × N N×N N×N的矩阵的逆矩阵。答案对 1 0 9 + 7 10^9+7 109+7取模。
一个困扰了数学界80多年的单位猜想,被一个博士后研究员证伪了。他在晶体形状的对称性结构中,发现了一个关于乘法逆元基本猜想的反例。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014688145/article/details/77687921
计算乘法逆元是学习加密算法的基础,在 RSA、ECC 和 AES 加密算法中都会用到,在网上提供的方法也有,比如扩展欧几里德算法等,看了以后要根据它提供的示例去推导也是有困难的,关键是自己太渣了。以前以为加密算法的基础是数学,后来才知道不是数学,而是数论。无路可逃啊!
在线提交: https://leetcode.com/problems/super-pow/
There are N robots standing on the ground (Don't know why. Don't know how).
n个数里插入k个+号,所有式子的和是多少(取模1000000007) (0 ≤ k < n ≤ 105)。
椭圆曲线 椭圆曲线在代数上的表示是下面这个方程: y2 = x3 + ax + b 其中,a = 0, b = 7 (比特币系统所使用的版本),它的图形如下: 椭圆曲线有一些很有用的特征 一条
文本首发知乎:https://zhuanlan.zhihu.com/p/87516875
多项式求逆元,即已知多项式$A(x)$,我们需要找到一个多项式$A^{-1}(x)$
的值,即可用快速幂 求出 x的逆元。这个算法好写好记,常数也较小。一般当 p 为 int 范围内的质数时选择此算法。当 p 不在 int 范围内时,由于快速幂时需要两个 long long 相乘,会爆精度。
设置一个小小坑点,x的范围并没有加以特殊限制,所以需要判断一下x是否存在逆元。也就是判断一下是不是倍数。
1856: [Scoi2010]字符串 Time Limit: 5 Sec Memory Limit: 64 MB Submit: 847 Solved: 434 [Submit][Status] Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数。现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗? Input 输入数据是一行,包括2个数
在一个公钥加密系统中,任何人参与者都拥有独自的公钥和密钥,通常用P表示公钥,用S表示密钥,公钥用于加密,密钥用于解密。并且公钥可以公开,任何人都可以使用这个公钥发送一段密文,而只有私钥的持有者才可以用私钥解密
从(1,1)到(n,m),每次向右或向下走一步,,不能经过(x,y),求走的方案数取模。 可以经过(x,y)则相当于m+n步里面选n步必须向下走,方案数为
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/127206.html原文链接:https://javaforall.cn
可发现该问题是错排的一个变形。题目要求的是有"m 个位置 i,使得 ai=ia_i = iai=i。"。相当于从n个数中,挑m个位置不变动,剩下的进行错排。
凯撒密码的原理:计算并输出偏移量为3的凯撒密码的结果 注意:密文是大写字母,在变换加密之前把明文字母都替换为大写字母
下面我问来举个例子: 假设我们已经知道明文是19; 我们选定两个素数p=7,q=19; so n=p*q = 119 ,φ(n) = (p-1)*(q-1) = 96; 我们选择满足条件的e = 5,我们就能很简单的知道d = 77 所以共钥为{5,119},密钥{77,119} 所以我们可以得到密文是 C = (19^e)%n = (19^5)%119 = 66 解密为(C^d)%n = 19;
推导过程如下(摘自Acdreamer博客) 这个为费马小定理,m为素数是费马小定理的前置条件。 求a/b=x(mod M) 只要M是一个素数,而且b不是M的倍数,就可以用一个逆元整数b1,通过 a/
满足 a * k ≡ 1 (mod p) 的k 叫做 a关于p的乘法逆元。另一种表达方法是 k ≡ a-1 (mod p)
领取专属 10元无门槛券
手把手带您无忧上云