首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

选择一组标记来区分个体

可以使用唯一的标识符,例如UUID(Universally Unique Identifier)。UUID是一个128位的数字,通常表示为32个十六进制数字的字符串,用于在计算机系统中唯一地标识实体。它具有以下特点:

概念:UUID是一种用于标识实体的标准化方法,它在云计算领域被广泛应用。

分类:UUID属于唯一标识符(Unique Identifier)的一种,用于确保标识的唯一性。

优势:

  1. 唯一性:UUID可以在全球范围内保证唯一性,几乎可以忽略重复的可能性。
  2. 简单性:UUID的生成过程简单,不需要依赖外部资源。
  3. 高效性:UUID的生成速度快,可以满足大规模分布式系统的需求。
  4. 安全性:UUID的生成算法基于随机性,难以被猜测或破解。

应用场景:

  1. 数据库主键:UUID可以作为数据库表的主键,确保数据的唯一性。
  2. 分布式系统:在分布式系统中,UUID可以用于标识不同节点或实体,方便进行数据同步和识别。
  3. 会话管理:UUID可以用于生成唯一的会话ID,用于用户登录和身份验证。
  4. 日志跟踪:UUID可以用于标识日志记录,方便进行日志的追踪和分析。

腾讯云相关产品: 腾讯云提供了与UUID相关的服务和产品,例如:

  1. 云数据库CynosDB:腾讯云的分布式数据库服务,支持使用UUID作为主键进行数据存储和查询。
  2. 云服务器CVM:腾讯云的虚拟服务器产品,可以在创建实例时生成唯一的UUID作为实例的标识。
  3. 云原生容器服务TKE:腾讯云的容器编排和管理服务,可以使用UUID标识不同的容器实例。

更多关于腾讯云产品的介绍和详细信息,请访问腾讯云官方网站:https://cloud.tencent.com/

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

个性化大脑连接组指纹:它们在认知中的重要性

人脑的神经网络结构模式可能与个体在表型、行为、遗传决定因素和神经精神障碍的临床结果方面的差异有关。最近的研究表明,个性化的神经(大脑)指纹可以从大脑的结构连接体中识别出来。然而,个性化指纹在认知方面的准确性、可重复性和翻译潜力尚未完全确定。在本研究中,我们引入了一种动态连接体建模方法来识别一组关键的白质子网络,可以用作个性化指纹。我们进行了几个个体变量评估,以证明个性化指纹的准确性和实用性,特别是预测中年成年人的身份和智商,以及幼儿的发育商。我们的发现表明,我们的动态建模方法发现的指纹足以区分个体,也能够预测整个人类发展的一般智力能力。

02
  • 【Nature子刊】CMU利用机器学习发现具有自杀想法的病人,准确度94%

    【新智元导读】CMU心理学系教授 Marcel Just 等人在一项功能性核磁共振成像(fMRI)研究中发现了具有自杀倾向的精神病患者的表征。他们提出,利用机器学习技术表征人脑内的死亡和生命相关概念,可以高度准确地区分具有自杀想法的病人和无自杀想法的个体。该方法还可以在具有自杀想法的人中,进一步区分哪些人做出过自杀尝试,而哪些没有。 根据世界卫生组织统计,每年约有80万人自杀身亡。评估自杀风险是心理健康临床医生面临的最大挑战之一:具有自杀想法的病人常常掩盖其自身意图,而临床医生对自杀风险的预测也一直不甚理想

    06

    机器学习与神经影像:评估它在精神病学中的应用

    精神疾病是复杂的,涉及不同的症状学和神经生物学,很少涉及单一的、孤立的大脑结构的破坏。为了更好地描述和理解精神疾病的复杂性,研究人员越来越多地将多元模式分类方法应用于神经成像数据,特别是监督机器学习方法。然而,监督机器学习方法也有独特的挑战和权衡,需要额外的研究设计和解释考虑。本综述的目的是提供一套评估机器学习应用于精神障碍的最佳实践。我们将讨论如何评估两种共同的努力:1)作出可能有助于诊断、预后和治疗的预测;2)询问精神病理学背后复杂的神经生理机制。我们在这里重点讨论机器学习应用于功能连接与磁共振成像,作为一个基础讨论的例子。我们认为,为了使机器学习分类对个体水平的预测具有转化效用,研究人员必须确保分类具有临床信息性,独立于混杂变量,并对性能和泛化性进行适当评估。我们认为,要想揭示精神疾病的复杂机制,需要考虑机器学习方法识别的神经成像特征(如区域、网络、连接)的独特效用、可解释性和可靠性。最后,我们讨论了大型、多站点、公开可用的数据集的兴起如何有助于机器学习方法在精神病学中的应用。

    00

    Cerebral Cortex:大尺度结构协变网络预测中老年成人的脑年龄

    一、背景   老化是一个复杂而且动态的过程,伴随着不断累积的年龄效应,影响了人类的多个器官。这些器官的衰退引起了多种行为和临床的表现,比如心血管疾病,认知衰退等。虽然这些临床症状在老年时期才会显现,但是相应的变化在老年之前的很多年前就会开始发挥作用。越来越多的研究者开始寻找能够提前预示着老化的一些生物标记物,来防范于未然。   老化的一个显著的变化是大脑组织的改变,这些改变已用MRI研究发现。此前,很多研究已经发现从大脑灰质体积,白质完整性,皮层厚度等很多方面发与于老化有关系。并且,这些正常的衰老变化在神经精神疾病和神经退行性疾病中会发生改变。进而提出了大脑加速化衰老的概念,并且假设这种衰老化的快慢能够用来区分正常人和患者。借助机器学习,研究人员不仅发现人脑的灰质体积和白质完整性能够预测人的生物学年龄,并且发现阿尔兹海默症,轻度认知障碍,精神分裂症等患者存在脑加速衰老的表现。    近年来的研究发现,大脑不同区域之间共同作用形成了不同的大脑子网络。其中,结构协变网络就是其中一种研究大脑大尺度协作关系的研究手段。很多研究指出结构协变网络能够反映跨脑区的遗传发育和同步成熟。在此基础之上,很多研究也发现利用结构协变网络研究神经退行性疾病和神经精神病网络级上异常的可能性。近期,发表在《Cerebral Cortex》杂志上的一篇研究论文结合结构协变网络和机器学习来构建模型预测脑年龄,并且该模型能够检测出相关疾病的脑加速化衰老现象。 二、材料方法 1.被试   研究包含了中老年精神疾病和神经退行性疾病患者,年龄范围在50-90岁。正常对照的总人数是909人,年龄范围在50-89岁,用来构建模型预测脑年龄。 2.数据采集   采集了所有被试的T1加权图像,并且计算了每个被试的灰质体积图。 3.分析流程   图1表示了文章的具体分析流程。首先计算完每个被试的灰质体积图。将所有的被试串联在一起,用ICA的方法划分团块。这里由于ICA需要事先确定主成分个数,所以设定一个区间。在训练集内,用空间回归的方法计算每个网络整合系数(beta系数)。这些网络的整合系数被进一步当成特征来预测大脑的年龄。在确定了最优的成分数之后,训练集得到的ICA的成分图被当作先验模板来计算测试集和临床疾病数据的网络整合系数。然后,将测试集和临床疾病数据的网络整合系数送入训练好的模型进行预测。

    01

    Cerebral Cortex:静息态fMRI功能连接可以预测男女关系的相容性

    即使在信息技术显著发展的情况下,基于自我报告的特征和偏好来预测异性恋个体最初的相容性也并不成功。为了克服自我报告测量和预测相容性的局限性,我们使用了来自静息状态功能磁共振成像(fMRI)数据的功能连接,这些数据携带丰富的个体特异性信息,足以预测社会认知任务中的心理构建和激活模式。在从静息态功能磁共振成像(fmri)中收集数据的几天后,参与者进行了一个快速约会实验,在这个实验中,他们与其他所有异性参与者进行3分钟的快速约会。我们的机器学习算法成功地预测了实验中的成对是否兼容,使用实验前获得的功能连接的(不)相似性。个体之间功能连接的相似性和差异性以及这些多元关系有助于预测,因此表明了互补性(观察到的差异性)的重要性,以及个体与潜在伴侣在最初吸引阶段的相似性。结果表明,突显网络、边缘区域和小脑对相容感尤为重要。这项研究强调了神经信息在社会环境中预测复杂现象的效用,而单凭行为测量是无法预测的。

    03

    机器学习在精神病学研究中的应用

    鉴于最近的努力是为了识别MRI衍生的生物标志物,这可能有助于深入了解病理生理过程,并完善精神疾病的分类。特别是,机器学习模型的准确性可以作为因变量来识别与病理生理学相关的特征。此外,这些方法可能有助于理清精神疾病的维度(在诊断内)和经常重叠(跨诊断)的症状学。我们还指出了一个多视角,它结合了来自不同来源的数据,连接了分子和系统水平的信息。最后,我们总结了最近通过无监督和半监督方法实现数据驱动定义的亚型或疾病实体的努力。后者,混合了无监督和有监督的概念,可能代表了解剖异构类别的一个特别有前途的途径。最后,我们提出了与所综述的方法相关的几个技术和概念方面。特别地,我们讨论了与可能导致不可靠输出的有缺陷的输入数据或分析过程有关的常见缺陷。

    02

    慢性疼痛的脑影像分析

    慢性疼痛是引起全球致残率与保险与医疗法律案件中慢性疼痛相关索赔的重要原因。脑影像(fMRI、PET、EEG及MEG)对于慢性疼痛患者诊断、预后评估、治疗效果评价具有潜在价值。在该项共识声明中,国际疼痛研究特别工作组探讨脑影像对于慢性疼痛的诊断价值及对伦理与法律的参考意义。特别工作组强调,目前脑影像的应用处于探索阶段,但是对于帮助理解慢性疼痛的神经机制、指导治疗药物的发展方向、预测个体化疼痛管理疗效具有潜在价值。工作组提出了在任何脑成像采集前所必须提供的符合临床与法律目的的证据标准。在法律案件中,该证据的可采取性很大程度上取决于司法管辖区的法律。针对这些原因,工作组提出使用脑影像发现来支持或辩论关于慢性疼痛的索赔争议,作为有效的疼痛测谎仪,虽并非必要,但是应使用影像进一步研究及理解慢性疼痛的机制。

    04

    针对个体的精准神经影像—当前的方法和未来方向

    大多数大脑功能的神经成像研究都是在归一化空间中分析数据,以识别参与者的共同激活区域。这些研究把大脑组织的个体间差异当作噪音,但这种方法可能掩盖关于大脑功能结构的重要信息。最近,许多研究采用了一种针对个体的方法,旨在描述这些个体差异,并探索它们的可靠性和对行为的影响。这些研究中有一部分采用了精确成像方法,从每个参与者身上收集数小时的数据,以更精细的比例绘制大脑功能图。在这篇综述中,我们提供了一个广泛的概述,即个体特异性和精准成像技术如何使用静息状态测量来检查大脑组织的个体差异及其对行为的影响,然后基于任务的活动如何继续增加这些发现的细节。我们认为,在认知神经科学的许多领域中,个体特异性和精确方法在揭示大脑功能组织及其与行为的关系的新细节方面显示了巨大的希望。我们还讨论了该新领域目前的一些局限性和可能采取的一些新方向。

    01

    个体化精准神经成像:目前的方法和未来的方向

    大多数脑功能的神经影像学研究都是在标准化空间中分析数据,以确定参与者的共同激活区域。这些研究将大脑组织的个体差异视为噪音,但这种方法可能会掩盖有关大脑功能结构的重要信息。最近,一些研究采用了针对个体的方法,旨在描述这些个体差异的特征,并探索其可靠性和对行为的影响。这些研究的一个子集采用了精确成像方法,从每个参与者那里收集多个小时的数据,以更精细的尺度绘制大脑功能。在这篇综述中,我们对特定于人的精确成像技术如何使用静息状态测量来检查大脑组织中的个体差异及其对行为的影响进行了广泛的概述,随后是基于任务的活动如何继续为这些发现添加细节。我们认为,在认知神经科学的许多领域,针对人的精确方法在揭示大脑功能组织及其与行为关系的新细节方面表现出了巨大的希望。我们还讨论了这个新领域目前的一些限制以及它可能采取的一些新方向。

    04

    Nature medicine:基于可穿戴运动追踪数据早期识别帕金森疾病

    摘要:帕金森病是一种具有长期潜伏期的神经退行性运动障碍,目前尚无治疗方法。可靠的预测性生物标志物可能会改变开发神经保护治疗的努力,但仍有待确定。利用UK Biobank,我们研究了加速度计在普通人群中识别前驱帕金森病的预测价值,并将这种数字生物标志物与基于遗传、生活方式、血液生化或前驱症状数据的模型进行了比较。使用加速度计数据训练的机器学习模型在区分临床诊断的帕金森病和诊断前7年的前驱帕金森病与普通人群方面的测试性能优于所有其他测试模。加速度计是一种潜在的重要、低成本的筛查工具,用于确定有患帕金森病风险的人,并确定神经保护治疗临床试验的参与者。

    02

    支持神经发育障碍诊断和治疗的技术:系统综述

    根据《精神疾病诊断与统计手册》,神经发育障碍(ndd)是一组早期发病的疾病,其特征是各种缺陷,损害个人、学术、社交或职业领域的功能。近年来,ndd成为儿科人群中最常见的诊断之一,其中最常见的诊断是学习障碍,患病率约为8%,发展性语言障碍7%,自闭症谱系障碍(ASD, 2%),以及注意缺陷多动障碍(ADHD, 2%)。诊断本身可能具有挑战性,因为各种共病在NDD人群中不是例外,而是一种规则。另一个挑战是不同疾病之间一定程度的表型重叠,以及一种具有相同诊断的个体的症状和功能水平差异很大。早期发现ndd非常重要,因为它可以快速干预,改善儿童预后并最大化治疗效果,因为人类生命最初几年的神经可塑性很高。然而,转介进行NDD评估的患者在接受诊断时往往会遇到严重延误。根据最近发表的一项研究,40%的家庭在首次就诊后六个月仍在等待诊断。此外,在加拿大进行的研究表明,从转诊到收到ASD诊断的中位总等待时间为7个月。此外,一旦确诊,家庭往往要处理在开始治疗方面的严重延误和缺乏令人满意的治疗监测。例如,只有20%的图雷特综合症年轻人有机会接受行为抽动治疗,而那些接受治疗的人通常只参加不到建议次数的一半。造成这种情况的原因之一是缺乏训练有素的治疗师,特别是在地理上偏远的地区,以及临床时间不足,无法提供最佳护理实践。因此,为ndd的诊断和治疗确定具有时效性和易于获取的策略的重要性是显而易见的。

    03

    Nature neuroscience:功能脑组织表征的挑战和未来方向

    摘要:大脑组织的一个关键原则是将大脑区域的功能整合成相互关联的网络。在休息时获得的功能MRI扫描通过自发活动中的相干波动模式,即所谓的功能连接,提供了对功能整合的见解。这些模式已被深入研究,并与认知和疾病有关。然而,这个领域是细分的。不同的分析方法将对大脑进行不同划分,限制了研究结果的复制和临床转化。这种划分的主要来源是将复杂的大脑数据简化为用于分析和解释的低维特征集的方法,这就是我们所说的大脑表征。在本文中,我们提供了不同大脑表征的概述,列出了导致该领域细分和继续形成汇聚障碍的挑战,并提出了统一该领域的具体指导方针。 1.简述 静息态MRI的研究领域是分级的,关于预处理流程、脑分区方法、后处理分析方法和端点都存在争议。这个问题的主要来源是脑表征的挑战。磁共振产生大量的高维数据,一个主要的分析任务是从测得的脑活动的巨大的复杂度中提取可解释的内容。此处我们用“脑表征”来描述这个降维过程。脑表征是一个采集的MRI数据的多层面描述,包括脑单元的空间定义(分区)和在脑单元水平提取可解释特征的总体测度(如配对相关)。如何表征脑数据从根本上奠定了脑功能和组织的描述。 脑的表征经常被考虑为映射问题,旨在消除功能和神经组织的神经解剖不同区域的边界。然而,脑表征包括了表征形式以及数据如何转化成这些表征。本文旨在为该领域的一致性和可重复性提供一个rfMRI表征挑战的入门。 2.脑表征入门 脑表征可以将采集得到的BOLD数据减少为一组特征进行分析。许多脑表征识别:1)一组低维脑单元(空间分区)2)应用在脑单元水平的一组测度组合(配对相关)。这些特征用于后面的统计或预测分析。用“脑单元”来指代任意空间上定义的神经实体,可以被当作一个基础的功能处理单元。“测度组合”作为计算特征的方法,相对于脑单元定义。组合测度用来回答研究问题,因此是相对“特定领域”的。一小部分脑表征不用脑单元和组合测度,而用估计特征,可以代表活动的复杂的时空模式。 2.1定义一个脑单元 rfMRI空间分辨率轻松可达2x2x2mm³,这会在全脑得到约100000体素。rfMRI中,这些体素(或顶点)是最小的可测脑单元。然而其并不代表具体的神经解剖层级水平。因此会将体素或顶点单元组合成更小的脑单元集合来实现有意义的低等级脑表征。 脑单元可能在空间上相邻或不相邻。相邻脑单元与功能具体皮层区域一致(图1a),不相邻脑单元可以捕捉层级组织的和大的半球对称脑的复杂网络结构(图1b)。脑单元可以是二值化(一个体素或顶点被分配到一个单元)的或加权的(体素或顶点根据其权重对多个单元有贡献)。 很多方法可以来定义脑单元。明显的选择是根据基于组织学、病变、褶皱或其他特征定义的图集的分区。但这些图集源于小部分人,且解剖上定义的边界与功能组织不一定匹配。很多方法用功能数据来定义分区,包括ICA,PCA,非负矩阵分解,概率功能模块或字典学习。这种分区依赖于自发BOLD波动,限制了其适用性。用解构、静息、任务结合的多模态方法可能提供广泛性更好的分区。

    00
    领券