这类算法有个通病,就是即使选择使用SIMD指令加速,因为其内在的特性,速度还是不能很快,但是又找不到其他合适的构架来优化他,还必须使用直方图技术,比如我们的中值滤波, 我尝试过各种商业软件,其速度都和我博客里提到的那个优化速度差不多,说明大家基本上都是那个套路。你们当确实某个场景需要更快的速度时,我们是否能有其他方法来加速呢,或者使用某个近似的方法来替代呢,经过个人的实践,我觉得还是可以有的。
文章主要介绍了如何利用深度学习的图像模糊算法实现图像的模糊和去模糊化。首先介绍了图像模糊算法的原理和分类,然后详细讲解了基于卷积神经网络的模糊算法和基于生成对抗网络的去模糊化算法的实现。文章还探讨了这些算法的优缺点和适用场景,并提供了相应的示例代码和演示效果。
中安威士数据库透明加密系统(简称VS-EC),基于加密算法和合理的密钥管理,有选择性地加密敏感字段内容,保护数据库内敏感数据的安全。敏感数据以密文的形式存储,能保证即使在存储介质被窃取或数据文件被非法复制的情况下,敏感数据仍是安全的。并通过密码技术实现三权分立,避免DBA密码泄漏带来的批量数据泄漏风险。本加密系统具有卓越的安全性和处理能力,并能在不修改原有应用程序的情况下透明的接入系统中。
关于AI是什么,学界和业界已经给出了非常多的定义,但是对于AI理解,探讨尚不足。换句话说,计算机科学家解释深度神经网络(DNNs)的能力大大落后于我们利用其取得有用结果的能力。
数据库优化有很多可以讲,按照支撑的数据量来分可以分为两个阶段:单机数据库和分库分表,前者一般可以支撑500W或者10G以内的数据,超过这个值则需要考虑分库分表。另外,一般大企业面试往往会从单机数据库问起,一步一步问到分库分表,中间会穿插很多数据库优化的问题。本文试图描述单机数据库优化的一些实践,数据库基于mysql,如有不合理的地方,欢迎指正。
图像恢复是数字图像处理中的基本任务,旨在从各种退化(如噪声、模糊和雨迹)损害的图像中重建高质量图像。最近的进展凸显了卷积神经网络(CNNs)[1, 2, 3]和基于Transformer的模型[4, 5, 6, 7]在此领域的有效性。CNN利用层次结构,擅长捕捉图像内的空间层次。Transformer模型最初是为自然语言处理设计的,但已经显示出对视觉理解的积极成果,例如Vision Transformer[8]。Transformer模型采用自注意力机制,特别擅长建模长距离依赖。这两种方法在许多图像恢复任务中均取得了最先进的结果[9, 10, 11]。
索引是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
本篇文章以小简看过的文献以及查阅的资料为基础,归纳和总结了可搜索加密(Searchable Encryption,SE)的相关知识点。
MySQL客户端连接成功后,通过show [session | global] status命令可以提供服务器状态信息。还可以通过show global status like 'Com_______'命令,查看当前数据库的INSERT \ UPDATE \ DELETE \ SELECT的访问频次。
动态场景去模糊是一项具有挑战性的低水平视觉任务,其中空间变异模糊是由相机抖动和物体运动等多种因素造成的。最近的研究取得了重大进展。通过与参数无关方案和参数共享方案的比较,提出了一种通用的、有效的选择性共享方案,给出了约束去模糊网络结构的一般原则。在每个尺度的子网中,我们提出了一种非线性变换模块的嵌套跳跃连接结构来代替堆叠的卷积层或剩余块。此外,我们建立了一个新的大的模糊/锐化图像对数据集,以获得更好的恢复质量。综合实验结果表明,本文提出的参数选择共享方案、嵌套式跳跃连接结构和新数据集对建立动态场景去模糊新技术具有重要意义。
想让您的照片变得栩栩如生?推荐使用Darkroom给大家,一款高级照片编辑器,编辑任何内置或高级过滤器以满足您的需求,或从头开始创建您自己的过滤器。
索引是帮助 MySQL 高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查询算法,这种数据结构就是索引。
过滤是信号和图像处理中基本的任务。其目的是根据应用环境的不同,选择性的提取图像中某些认为是重要的信息。过滤可以移除图像中的噪音、提取感兴趣的可视特征、允许图像重采样等等。频域分析将图像分成从低频到高频的不同部分。低频对应图像强度变化小的区域,而高频是图像强度变化非常大的区域。在频率分析领域的框架中,滤波器是一个用来增强图像中某个波段或频率并阻塞(或降低)其他频率波段的操作。低通滤波器是消除图像中高频部分,但保留低频部分。高通滤波器消除低频部分.
链接:https://zhuanlan.zhihu.com/p/106587858
大多数的接口性能问题,很多情况下都是SQL问题,在工作中,我们也会定期对慢SQL进行优化,以提高接口性能。这里总结一下常见的优化方向和策略。
很多人对多列索引的理解都不够。一个常见的错误就是,为每个列创建独立的索引,或者按照错误的顺序创建多列索引。
Portraiture3和Portraiture4这两个版本大家用的比较多,那是因为这两个版本是中文比较全的版本。portraiture是一款强大的64位PS磨皮滤镜,利用该PS滤镜插件可以对图片中的人物进行润色,磨皮等操作,处理皮肤材质、头发等。帮您消除了选择性遮蔽与逐像素处理的繁琐手工劳动,帮您实现卓越的人像修饰。不仅磨皮全面,并且还可以增强肤色的质感,是人物处理不可缺少的外挂滤镜,使用简单,小白也能立即刻手,分分钟去除脸上的痘痘、疤痕,可以平滑与去除缺陷,同时保留皮肤纹理与重要的人像细节,功能十分强大。全新4版本,升级AI算法,并独家支持多人及全身模式!
图像压缩技术旨在将图像转换为紧凑的表示,以节省传输和存储资源。有损图像压缩是最实用的技术之一,因为它可以恢复重要内容,同时丢弃少量不重要的信息。在过去的几十年里,传统的图像压缩标准得到了广泛的研究和利用。随着深度学习的快速发展,基于深度学习的图像编解码器迅速发展并取得了很好的结果。与此同时,越来越多的多媒体内容倾向于被机器视觉算法处理,如识别、检测和分割。然而,大多数压缩方法主要用于压缩图像以供人类消费,而没有考虑对下游任务或人机交互场景的支持。
如果没有using index condtion,field1会走索引查询,匹配到对应的数据后,回表查出剩余字段信息,再去匹配。
随着业务不断迭代,系统中出现了较多的SQL慢查。慢查虽不致命,但会让商家感知到系统较慢,影响使用体验。在进行慢查优化过程中,我们积累了一些经验。本文将基于我们的实战经历,讲解工作中比较常见的慢查原因,以及如何去优化。
3)尽量避免NULL:很多表都包含可为NULL(空值)的列,通常情况下最好指定为NOT NULL。因为如果查询中包含可为NULL的列,对于Mysql来说更难优化。
算法:enhance_contrast滤波器是对比度增强滤波,首先计算局部区域最大值和最小值,然后查看当前点像素值最接近最大值还是最小值,最后替换为最大值或最小值。原始图像中每个像素与模糊图像中对应像素之间的亮度差异表示像素针对其相邻者的对比程度。该像素的亮度随后会与局部坐标对比度成比例变化。模糊之后更暗的像素必须比其相邻者更亮,因此其亮度会进一步提高,而如果像素在模糊之后更暗,则它甚至将变暗更多,在细节最显著的图像区域中选择性地增大对比度。钝化遮蔽的参数是像素半径(越过该半径的颜色会模糊)、该效果对亮度的改变程度以及对比度“阈值”(低于该阈值不会进行任何亮度变化)。
这篇笔记,仅仅是对选择性算法介绍一下原理性知识,不对公式进行推倒. 前言: 这篇论文介绍的是,如果快速的找到的可能是物体目标的区域,不像使用传统的滑动窗口来暴力进行区域识别.这里是使用算法从多个维度
这篇论文介绍的是,如果快速的找到的可能是物体目标的区域,不像使用传统的滑动窗口来暴力进行区域识别。这里是使用算法从多个维度对找到图片中,可能的区域目标,减少目标碎片,提升物体检测效率。
内容一览:G 蛋白偶联受体 (GPCRs) 是一种将细胞膜外的刺激,传递到细胞膜内的跨膜蛋白,广泛参与到人体生理活动当中。近日,佛罗里达大学的研究者测定了 GPCRs 和 G 蛋白的结合选择性,并开发了预测二者选择性的算法,对这一选择性的结构基础进行了研究。
上篇文章我们说了创建索引的方法,有聚簇索引、辅助索引、前缀索引、联合索引等,也说了如何利用索引的排序功能,接着本篇文章主要来说一说索引的几种优化策略,首先我们先说下回表的概念。
传统的语言模型预训练方法,对每个Token都是采用下一个Token的预测损失,然而对于预训练模型来说,并非所有Token都是同等重要。为此,本文作者进行了深入的分析,将Token进行分类,并提出了一种新型的语言模型训练方法:选择性语言建模法(SLM),实验结果表明:SLM方法不仅提高了模型性能还提高了训练效率,在数学任务上,使用SLM方法预训练的模型在少量样本准确率上比传统方法提高了多达30%;在通用任务上,SLM方法也实现了平均6.8%的性能提升。
在刚刚过去的一个学期里,基本水逆了一整个学期,这学期基本没干什么活,就跟RCNN杠上了。首先是看论文,然后是网上找tensorflow写好的源码。但是,可惜的是网上给出的源码基本上是RCNN的主要作者Ross Girshick大神的代码,不同数据集换了下。因此为了理解源码,RCNN的处理过程,费劲去装了个ubuntu和win10的双系统并在Ubuntu上安装caffe,这就花费了近2周的时间。快速研究完RCNN的caffe源码之后,才转过来手写Fast RCNN的tensorflow版本的代码,这也花费了大量的时间,从踩坑到填坑再到踩坑。RCNN不是很好实现,SVM至今还没怎么看懂。接下来将会陆续更新RCNN->Fast RCNN->Faster RCNN系列的文章。在这篇文章中,主要讲解RCNN与Fast RCNN中获取图片中物体真实目标检测框的算法——选择性搜索算法。
超分辨率(SR)和图像生成是计算机视觉中重要的任务,在现实应用中得到广泛采用。然而,大多数现有方法仅在固定放大倍数下生成图像,并且容易出现过平滑和伪影。此外,在输出图像的多样性和不同尺度下的一致性方面也不足。大部分相关工作应用了隐式神经表示(INR)到去噪扩散模型中,以获得连续分辨率的多样化且高质量的SR结果。由于该模型在图像空间中操作,所以产生分辨率越大的图像,需要的内存和推理时间也越多,并且它也不能保持尺度特定的一致性。
Affinity Photo是一款强大好用的Mac图像编辑工具,拥有众多专业高端功能,如Raw处理、psD导入和导出、16位通道的编辑和ICC色彩管理以及兼容大量图片格式,功能强大!
第5章 创建高性能的索引 并不是所有的存储引擎都用的B+数,B数能提高查询速度,但是B+树可以方便叶子节点的范围查询。 多列索引,不仅可以精确匹配最左列的数据,还能模糊匹配最左列前缀数据。 如果有某些列模糊查询了多列索引的其中一个,其后面的索引都不再生效。 哈希索引不支持范围查询也不支持排序。只支持精确查询。 innodb引擎有个特殊的功能叫“自适应哈希索引”,当innodb发现某些索引值被使用的非常频繁时,就会在内存中基于B-tree索引之上再建立一个哈希索引。 虽然存储引擎不支持哈希索引,但是我们可以自
在许多企业中,每天业务人员和客户的沟通都会产生大量记录,这些记录可能包括了客服的沟通数据(通话记录、通话小结),也可能包括了各式各样的报告数据(陪访报告、征信报告等)(见图1)。
在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
本文适合刚入门物体检测的人群学习,不涉及公式推理。 目录 *摘要 *相关物体检测数据集介绍 *现有的主流物体检测算法 *物体检测的难点与挑战 *相关术语介绍 *物体检测的传统算法概述 *基于深度学习的物体检测算法 R-CNN Fast-RCNN Faster-RCNN YOLO *物体检测动手实践 *参考文献 摘要 相比于图像分类,图像中物体检测是计算机视觉中一个更加复杂的问题,因为图像分类只需要判断出图像属于哪一类就行,而在物体检测中,图像里可能有多个物体,我们需要对所有
今年CVPR入选论文已公布,全球共有5165篇投稿,1299篇收录,同比去年增长32%(2017年论文录取979篇)。
本系列为 CMU 15-445 Fall 2022 Database Systems 数据库系统 [卡内基梅隆] 课程重点知识点摘录,附加个人拙见,同样借助CMU 15-445课程内容来完成MIT 6.830 lab内容。
AI 科技评论消息,CVPR 2019 即将于 6 月在美国长滩召开。今年有超过 5165 篇的大会论文投稿,最终录取 1299 篇。此次,腾讯公司有超过 58 篇论文被本届 CVPR 接收,其中腾讯优图实验室 25 篇、腾讯 AI Lab 33 篇,以下便是对腾讯优图实验室 25 篇被录用论文的详细介绍。
顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路径问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。
近日,信息技术和业务解决方案公司IBM申请了一项新专利,该专利描述了一个类似科幻剧《黑镜》之《方舟天使》(Arkangel)中儿童监控系统的视频审查系统。 在《方舟天使》中,小女孩萨拉的妈妈在萨拉的
------贪心选择性:若一个优化问题的全局优化解可以通过局部优化选择得到,则该问题成为具有贪心选择性
今天为大家介绍的是来自Connor W. Coley团队的一篇论文。模型可以将我们对化学反应性的理解具体化,并在新合成过程的发展中发挥有用的作用。例如,它们可以用来评估假设的反应条件或在计算机中模拟基质的耐受性。作者认为或许最决定性的因素是训练数据的组成,以及这些数据是否足够训练出一个能够在整个关注领域内做出准确预测的模型。在这里,作者讨论了如何设计反应数据集以促进数据驱动的建模,并强调训练集的多样性和模型的泛化能力依赖于分子或反应表征的选择。
顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。希望贪心算法得到的最终结果是整体最优的。贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。 在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。
一个准确且鲁棒的环境感知系统对于智能交通的发展至关重要,尤其是在自动驾驶车辆的情况下。满足J3016国际标准中规定的第5级自主性的要求,意味着需要具备在所谓的操作设计域之外进行操作的能力。不是在精心管理(通常是城市)的环境中,拥有大量专用基础设施。自动驾驶车辆(AVs)应该能够在不可控环境中运行,包括具有挑战性的天气、眩光、霾和雾造成的照明变化、标识不良的道路以及不可预测的道路使用者。
Hive优化器是使用Apache Calcite动态数据管理框架实现的,其中包含VolcanoPlanner基于成本优化器(CBO)和HelpPlaner基于规则的启发式优化器(RBO)优化器。根据用户HiveConf配置信息使用不同的优化器。
1.算法思想——基于概率的预测 贝叶斯决策论是概率框架下实施决策的基本方法。对分类任务来说,在所有相关概率都已知的情况下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的标记类别。
领取专属 10元无门槛券
手把手带您无忧上云