来源:专知本文为综述介绍,建议阅读5分钟本文对基于元学习的算法选择进行综述总结, 为研究人员了解相关领域的发展现状提供参考。 摘要: 随着人工智能的快速发展,从可行的算法中选择满足应用需求的算法已经成为各领域亟待解决的关键问题,即算法选择问题。基于元学习的方法是解决算法选择问题的重要途径,被广泛应用于算法选择研究并取得了良好成果。方法通过构建问题特征到候选算法性能的映射模型来选择合适的算法,主要包括提取元特征、计算候选算法性能、构建元数据集以及训练元模型等步骤。首先,阐述基于元学习的算法选择概念和框架,回
在之前的文章中,我们说了两个原地排序算法:插入排序和冒泡排序。分析两个算法的原理,也用代码实现了两个算法。最后,我们也从两个算法入手,引出了评价算法性能的两个重要指标:是否是原地排序算法和算法稳定性。今天我们再来说一种原地排序算法:** 选择排序**。
回溯算法是一种经典的算法技术,它在解决组合、排列、子集和图问题等方面表现出色。本篇博客将详细解释回溯算法的原理,探讨回溯算法的应用,并通过实例代码演示它在问题求解中的灵活运用。
1 综述 (1) 什么是特征选择 特征选择 ( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ) ,或属性选择( Attribute Selection ) ,是指从全部特征中选取一个特征子集,使构造出来的模型更好。 (2) 为什么要做特征选择 在机器学习的实际应用中,特征数量往往较多,其中可能存在不相关的特征,特征之间也可能存在相互依赖,容易导致如下的后果: 特征个数越多,分析特征、训练模型所需的时间就越长。 特征个数越多,容易引
今天分享一篇关于EEG特征选择优化的论文,发表于一区Top期刊Expert System with Applicaitons的论文Multi-objective symbiotic organism search algorithm for optimal feature selection in brain computer interfaces。
贪心算法的基本思想是每一步都选择当前状态下的最优解,通过局部最优的选择,来达到全局最优。
顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路径问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。
贪心算法是一种优化问题的解决方法,它每步选择当前状态下的最优解,最终希望通过局部最优的选择得到全局最优解。在本文中,我们将深入讲解Python中的贪心算法,包括基本概念、算法思想、具体应用场景,并使用代码示例演示贪心算法在实际问题中的应用。
贪心算法的基本思想是在每一步选择中都采取当前状态下的最优选择,以期望最终达到全局最优解。
上一次的强化学习简介中我们提到了强化学习是一种试错学习,没有直接的指导信息,需要用户不断地与环境进行交互,通过试错的方式获得最佳策略。这一节我们将从一个简单的单步强化学习模型进行进一步理解。
顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。希望贪心算法得到的最终结果是整体最优的。贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。 在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。
特征选择 ( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ) ,或属性选择( Attribute Selection ) ,是指从全部特征中选取一个特征子集,使构造出来的模型更好。
使用选择最晚开始活动的贪心策略来设计算法时,我们需要确保每一步都做出在当前状态下最优的选择,并且最终这些局部最优选择能够组成全局最优解。
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说面向高维和不平衡数据分类的集成学习研究论文研读笔记「建议收藏」,希望能够帮助大家进步!!!
A Gentle Introduction to Applied Machine Learning as a Search Problem 浅谈应用型机器学习作为一种搜索问题 应用型机器学习是具有挑战性的,因为针对给定问题设计完善的学习系统是非常棘手的。 (因为)没有最好的训练数据或最好的算法来解决你的问题,只有你可以发现的最好的。(作者的意思是你发现的最好的并不一定是最好的,还可能有更好的,译者注) 机器学习的应用被认为是最好的解决输入到输出的最佳映射的搜索问题,因为给定项目中知识和资源都是可用的。 在这
社交网络中的好友推荐是使用图算法的一个经典应用场景。社交网络中的好友关系可以看作是一个图,其中用户是图的节点,好友关系是图的边。好友推荐的目标是根据用户已有的好友关系,推荐用户可能感兴趣的新好友。
在之前进行富集分析介绍的时候,我们提到过关于富集分析是什么,以及富集分析的算法主要有哪些。在这么多的算法在进行富集分析的时候,就会让我们产生这样的疑问,那么多算法当中到底哪个更好呢?我在做完富集分析之后,应该信哪个算法的结果的?所以今天就给大家介绍一个可以同时对多个数据集进行多种算法同时分析的数据库: CPA(https://bioinformatics.cse.unr.edu/software/cpa/)
我的计算机网络专栏,是自己在计算机网络学习过程中的学习笔记与心得,在参考相关教材,网络搜素的前提下,结合自己过去一段时间笔记整理,而推出的该专栏,整体架构是根据计算机网络自顶向下方法而整理的,包括各大高校教学都是以此顺序进行的。 面向群体:在学计网的在校大学生,工作后想要提升的各位伙伴,
回溯算法是一种灵活且高效的算法技术,用于解决组合、排列、子集和图问题等。在本篇博客中,我们将重点探讨回溯算法在典型问题中的应用,包括八皇后问题和 0/1 背包问题,并通过实例代码演示回溯算法的解决过程,每行代码都配有详细的注释。
本文介绍了遗传算法的发展历程、应用案例、变种以及未来展望。
数据挖掘算法在监控软件中扮演着关键角色,可以用于从海量的监控数据中发现有价值的信息、模式和趋势。以下是关于数据挖掘算法在监控软件中准确性、可扩展性及应用的一些考虑因素。
导读 alphago和master在围棋领域的成绩掀起一股人工智能的热潮之后,人工智能在各个领域的应用成为了大家讨论的焦点。其实机器学习在测试领域的应用也已经有很长时间并且取得了一定的效果。 遗传算法作为机器学习的经典算法就在单元测试领域起着重要的作用,今天我们简单讨论一下遗传算法在单元测试中的应用 1遗传算法 遗传算法是由美国的J.Holland教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,模拟自然选择和自然遗传机制的随机化搜索算法。遗传算法在人工智能领域中用于解决最优化解的问题,是
ChatGPT 等基于 Transformer 的大语言模型具备极强的在上下文中学习(In-Context Learning,ICL)的能力:输入少量示例样本,即能够正确回答同类问题。如何理解这种 ICL 能力?
贪心算法是一种基于贪心策略的算法,其基本思想是在每一步选择中都采取当前最优的选择,以期望得到全局最优解。然而,贪心算法不一定能得到全局最优解,它可能在某些情况下陷入局部最优解,因此在应用中需要谨慎选择。
从前,有一个很穷的人救了一条蛇的命,蛇为了报答他的救命之恩,于是就让这个人提出要求,满足他的愿望。这个人一开始只要求简单的衣食,蛇都满足了他的愿望,后来慢慢的贪欲生起,要求做官,蛇也满足了他。这个人直到做了宰相还不满足,还要求做皇帝。蛇此时终于明白了,人的贪心是永无止境的,于是一口就把这个人吞掉了。
应用机器学习很具挑战性,因为设计完美的学习系统相当困难。 一个问题永远没有最好的训练数据集或者最好的算法,最好的只能是目之所及。 机器学习的应用可以理解为一个搜索问题,即根据某个项目的已知信息和可获取的资源,找到从输入到输出的最好的映射。在本文你即将看到把应用机器学习当作搜索问题的概念。 阅读完本译文你会了解到: 1. 应用机器学习是一个逼近未知映射(输入到输出)函数的问题。 2. 设计上的某些决定比如数据和算法的选择局限了映射函数的选择。 3. 机器学习的搜索概念化有助于合理地选择集成算法,算法的查验以及
Google搜索的结果,新浪微博向你展示的话题,淘票票向你推荐的电影,都说明了算法无处不在。而编程从本质上来说就是算法加数据结构 ,算法是编程思想的核心部分,对于一名基础软件工程师而言,常见的一些算法也是必须重点掌握的内容。而常见的算法以及其应用场景有哪些呢?
贪心算法适用于一些具有贪心选择性质的问题,这些问题的最优解可以通过一系列局部最优解来达到。通常情况下,贪心算法的效率较高,因为它不需要进行全局搜索,而是通过局部选择来逐步构建解决方案。
在规划图系统时,需要综合考虑问题需求、数据存储和处理效率、系统可扩展性以及算法选择等因素,以达到性能高、资源消耗低和可扩展性强的目标。
提及选择排序算法,我是一点都不陌生,我大一上学期在 C 语言这门课程中学习到的两个算法,其中一个就是选择排序算法,另一个就是冒泡排序算法。
选自machinelearningmastery 作者:Jason Brownlee 机器之心编译 参与:乾树、刘晓坤 本文以搜索问题的视角重构机器学习,为我们提供了新的思维架构,富有启发意义。 由于针对某一特定问题设计一套完美的智能系统难以控制,所以机器学习的实际应用极具挑战。 实际生产中并没有完全适用于你的问题的训练集和算法,一切都等你自己去发现。 我们最好将机器学习应用看成针对特定项目的已知知识和可用资源寻找输入到输出的最佳映射的搜索问题。 在本文中,你将会学到如何将机器学习应用于搜索问题。 读完本文
原文地址:https://machinelearningmastery.com/applied-machine-learning-as-a-search-problem/
大多数同学苦于刷了很多算法却在项目中很少应用,难以加深印象,而且总有同学问着有啥用啊有啥用啊?为了刷题而刷题,带着需求场景去应用算法是最为直接的学习方式。
摘要 因果特征选择算法(也称为马尔科夫边界发现)学习目标变量的马尔科夫边界,选择与目标存在因果关系的特征,具有比传统方法更好的可解释性和鲁棒性.文中对现有因果特征选择算法进行全面综述,分为单重马尔科夫边界发现算法和多重马尔科夫边界发现算法.基于每类算法的发展历程,详细介绍每类的经典算法和研究进展,对比它们在准确性、效率、数据依赖性等方面的优劣.此外,进一步总结因果特征选择在特殊数据(半监督数据、多标签数据、多源数据、流数据等)中的改进和应用.最后,分析该领域的当前研究热点和未来发展趋势,并建立因果特征选择资料库(http://home.ustc.edu.cn/~xingyuwu/MB.html),汇总该领域常用的算法包和数据集. 高维数据为真实世界的机器学习任务带来诸多挑战, 如计算资源和存储资源的消耗、数据的过拟合, 学习算法的性能退化[1], 而最具判别性的信息仅被一部分相关特征携带[2].为了降低数据维度, 避免维度灾难, 特征选择研究受到广泛关注.大量的实证研究[3, 4, 5]表明, 对于多数涉及数据拟合或统计分类的机器学习算法, 在去除不相关特征和冗余特征的特征子集上, 通常能获得比在原始特征集合上更好的拟合度或分类精度.此外, 选择更小的特征子集有助于更好地理解底层的数据生成流程[6].
很多人可能都听过算法,可能也实现过一些算法,如果问他什么是算法,可能也很难的准确的说出来。确实,给一个事物下定义是很难的,因为总会有没有覆盖的点。
动态规划是一种解决多阶段决策问题的算法思想,它通过将问题划分为若干个子问题,并保存子问题的解来求解原问题的方法。动态规划的特点包括以下几个方面:
快速排序是一种常见的排序算法,在实际应用中使用广泛。它的时间复杂度是O(nlogn),相对于其他排序算法,它的执行效率更高。
每年一到要找工作的时候,我就能收到很多人给我发来的邮件,总是问我怎么选择他们的offer,去腾讯还是去豆瓣,去外企还是去国内的企业,去创业还是去考研,来北京还是回老家,该不该去创新工场?该不该去thoughtworks?……等等,等等。今年从7月份到现在,我收到并回复了60多封这样的邮件。我更多帮他们整理思路,帮他们明白自己最想要的是什么。(注:我以后不再回复类似的邮件了)。 我深深地发现,对于我国这样从小被父母和老师安排各种事情长大的人,当有一天,父母和老师都跟不上的时候,我们几乎完全不知道怎么去做选择
一致性问题就是通过一些列的处理过程来选择某个特定的结果。这篇论文以存在 non-Byzantine 问题的异步消息传送系统来讨论一致性问题。解决这个问题的思路就是,在任何情况下都不能有两个被选择的值。即使一些处理过程失败了。并且在假定最终有足够多的处理过程处理成功了并且能够彼此通信,那么必须有唯一的一个值需要被选出作为一致性的结果。
一个程序员一生中可能会邂逅各种各样的算法,但总有那么几种,是作为一个程序员一定会遇见且大概率需要掌握的算法。今天就来聊聊这些十分重要的“必抓!”算法吧~,就比如说遗传算法啊
每年一到要找工作的时候,我就能收到很多人给我发来的邮件,总是问我怎么选择他们的offer,去腾讯还是去豆瓣,去外企还是去国内的企业,去创业还是去考研,来北京还是回老家,该不该去创新工场?该不该去 thoughtworks?……等等,等等。今年从7月份到现在,我收到并回复了60多封这样的邮件。我更多帮他们整理思路,帮他们明白自己最想要的是什么。(注:我以后不再回复类似的邮件了)。 我深深地发现,对于我国这样从小被父母和老师安排各种事情长大的人,当有一天,父母和老师都跟不上的时候,我们几乎完全不知道怎么去做选
每年一到要找工作的时候,我就能收到很多人给我发来的邮件,总是问我怎么选择他们的 offer,去腾讯还是去豆瓣,去外企还是去国内的企业,去创业还是去考研,来北京还是回老家,该不该去创新工场?该不该去 t
贪心算法的核心思想是每一步都选择当前最优的决策,不考虑未来的影响。贪心算法的基本步骤通常包括以下几个:
推荐系统中有一个经典的问题就是 EE (exploit-explore)问题,EE 问题有时也叫多臂赌博机问题(Multi-armed bandit problem, K-armed bandit problem, MAB),简单来说,EE 问题解决的是选择问题。
当遇到聚类分析问题的时候,机器学习领域中有很多聚类算法可供选择。标准的sklearn库就有13个不同的聚类算法。那么面对不同问题应该如何选择聚类算法呢?
每年一到要找工作的时候,我就能收到很多人给我发来的邮件,总是问我怎么选择他们的 offer,去腾讯还是去豆瓣,去外企还是去国内的企业,去创业还是去考研,来北京还是回老家,该不该去创新工场?该不该去 thoughtworks?……等等,等等。今年从 7 月份到现在,我收到并回复了 60 多封这样的邮件。我更多帮他们整理思路,帮他们明白自己最想要的是什么。(注:我以后不再回复类似的邮件了)。 我深深地发现,对于我国这样从小被父母和老师安排各种事情长大的人,当有一天,父母和老师都跟不上的时候,我们几乎完全
上面是该系列(数据结构与算法基础)的目录结构,包含了常见的数据结构和算法,下面介绍三大算法(分治算法,动态规划,贪心算法)的核心思想及使用场景。
完成一项任务,往往可以有多种不同的方式,每一种方式称为一个策略,我们可以根据环境或者条件的不同选择不同的策略来完成该项任务。在软件开发中也常常遇到类似的情况,实现某一个功能有多个途径,此时可以使用一种设计模式来使得系统可以灵活地选择解决途径,也能够方便地增加新的解决途径。
同样是排序算法,你可以选择冒泡排序、选择排序、插入排序、快速排序等等,也即是说,为了实现排序这一个目的,有很多种算法可以选择。这些不同的排序算法构成了一个算法族,你可以在需要的时候,根据需求或者条件限制(内存、复杂度等)适时选择具体的算法。
进化算法作为一种随机优化算法在复杂函数优化、组合优化与路径规划等领域具有广泛的应用。本文从进化算法的发展现状、缺陷与改进等方面进行了细致的分析调研。具体介绍了NP问题的定义与研究成果,并研究与讨论了基于传统经典与最新前沿的进化算法解决带约束组合优化的NP难题的方法策略。在标准数据集上的实验结果表明,进化算法在求解NP问题具有一定的实用性与延展性。
领取专属 10元无门槛券
手把手带您无忧上云