首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas库的基础使用系列---获取行和列

前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...大家还记得它们的区别吗?可以看看上一篇文章的内容。同样我们可以利用切片方法获取类似前4列这样的数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一列也计算在内了。...接下来我们再看看获取指定行指定列的数据df.loc[2, "2022年"]是不是很简单,大家要注意的是,这里的2并不算是所以哦,而是行名称,只不过是用了padnas自动帮我创建的行名称。...通常是建议这样获取的,因为从代码的可读性上更容易知道我们获取的是哪一行哪一列。当然我们也可以通过索引和切片的方式获取,只是可读性上没有这么好。

63700
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas中的loc和iloc_pandas获取指定数据的行和列

    大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...> 6] 结果: (6)也可以进行切片操作 # 进行切片操作,选择B,C,D,E四列区域内,B列大于6的值 data1 = data.loc[ data.B >6, ["B","C"...,"D","E"]] 结果: 2.iloc方法 iloc方法是通过索引行、列的索引位置[index, columns]来寻找值 (1)读取第二行的值 # 读取第二行的值,与loc方法一样 data1...和columns进行切片操作 # 读取第2、3行,第3、4列 data1 = data.iloc[1:3, 2:4] 结果: 注意: 这里的区间是左闭右开,data.iloc[1:

    10K21

    ArcPy栅格裁剪:对齐多个栅格图像的范围、统一行数与列数

    本文介绍基于Python中ArcPy模块,实现基于栅格图像批量裁剪栅格图像,同时对齐各个栅格图像的空间范围,统一其各自行数与列数的方法。   首先明确一下我们的需求。...现有某一地区的多张栅格遥感影像,其虽然都大致对应着同样的地物范围,但不同栅格影像之间的空间范围、行数与列数、像元的位置等都不完全一致;例如,某一景栅格影像会比其他栅格影像多出一行,而另一景栅格影像可能又会比其他栅格影像少一列等等...我们希望可以以其中某一景栅格影像为标准,将全部的栅格影像的具体范围、行数、列数等加以统一。   本文所用到的具体代码如下。...—因为我们要统一各个栅格图像的行号与列号,所以很显然,这里这个模板图像就需要找各个栅格图像中,行数与列数均为最少的那一景图像。...运行结果后,可以发现所有输出结果文件就具有完全一致的行数与列数了,且其各自的像元位置也是完全一致的。   至此,大功告成。

    46620

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?...图11 试着获取第3行Harry Poter的国家的名字。 图12 要获得第2行和第4行,以及其中的用户姓名、性别和年龄列,可以将行和列作为两个列表传递到参数“row”和“column”位置。

    19.2K60

    numpy和pandas库实战——批量得到文件夹下多个CSV文件中的第一列数据并求其最值

    /前言/ 前几天群里有个小伙伴问了一个问题,关于Python读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值,大家讨论的甚为激烈,在此总结了两个方法,希望后面有遇到该问题的小伙伴可以少走弯路...3、其中使用pandas库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ? 4、通过pandas库求取的结果如下图所示。 ?...通过该方法,便可以快速的取到文件夹下所有文件的第一列的最大值和最小值。 5、下面使用numpy库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ?...6、通过numpy库求取的结果如下图所示。 ? 通过该方法,也可以快速的取到文件夹下所有文件的第一列的最大值和最小值。.../小结/ 本文基于Python,使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件中第一列数据的最大值和最小值,当然除了这两种方法之外,肯定还有其他的方法也可以做得到的,欢迎大家积极探讨

    9.5K20

    Pandas图鉴(三):DataFrames

    df.shape返回行和列的数量。 df.info()总结了所有相关信息 还可以将一个或几个列设置为索引。...第二种情况,它对行和列都做了同样的事情。向Pandas提供列的名称而不是整数标签(使用列参数),有时提供行的名称。...所有的算术运算都是根据行和列的标签来排列的: 在DataFrames和Series的混合操作中,Series的行为(和广播)就像一个行-向量,并相应地被对齐: 可能是为了与列表和一维NumPy向量保持一致...默认情况下,Pandas会对任何可远程求和的东西进行求和,所以必须缩小你的选择范围,如下图: 注意,当对单列求和时,会得到一个Series而不是一个DataFrame。...与Series相比,该函数可以访问组的多个列(它被送入一个子DataFrame作为参数),如下图所示: 注意,不能在一个命令中结合预定义的聚合和几列范围的自定义函数,比如上面的那个,因为aggreg只接受一列范围的用户函数

    44420

    【Mark一下】46个常用 Pandas 方法速查表

    常见的数据切片和切换的方式如表3所示: 表3 Pandas常用数据切分方法 方法用途示例示例说明[['列名1', '列名2',…]]按列名选择单列或多列In: print(data2[['col1','...col2']]) Out: col1 col2 0 2 a 1 1 b 2 0 a选择data2的col1和col3两列[m:n]选择行索引在m到n...2 1 1选取行索引在[0:2)列索引在[0:1)中间的记录,行索引不包含2,列索引不包含1loc[m:n,[ '列名1', '列名2',…]]选择行索引在m到n间且列名为列名1、列名2的记录...Out: col1 col2 col3 0 2 a True 1 1 b True选择col3中值为True的所有记录多列单条件以所有的列为基础选择符合条件的数据...Out: col1 col2 col3 0 2 a True选择col2中值为a且col3值为True的记录使用“或”进行选择多个筛选条件,且多个条件的逻辑为“或”,用|表示

    4.9K20

    最全面的Pandas的教程!没有之一!

    同时你可以用 .loc[] 来指定具体的行列范围,并生成一个子数据表,就像在 NumPy里做的一样。比如,提取 'c' 行中 'Name’ 列的内容,可以如下操作: ?...你可以用逻辑运算符 &(与)和 |(或)来链接多个条件语句,以便一次应用多个筛选条件到当前的 DataFrame 上。举个栗子,你可以用下面的方法筛选出同时满足 'W'>0 和'X'>1 的行: ?...交叉选择行和列中的数据 我们可以用 .xs() 方法轻松获取到多级索引中某些特定级别的数据。比如,我们需要找到所有 Levels 中,Num = 22 的行: ?...当你使用 .dropna() 方法时,就是告诉 Pandas 删除掉存在一个或多个空值的行(或者列)。删除列用的是 .dropna(axis=0) ,删除行用的是 .dropna(axis=1) 。...比如,将表中所有 NaN 替换成 20 : ? 当然,这有的时候打击范围太大了。于是我们可以选择只对某些特定的行或者列进行填充。比如只对 'A' 列进行操作,在空值处填入该列的平均值: ?

    26K64

    Pandas库常用方法、函数集合

    qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个dataframe stack: 将数据框的列“堆叠”为一个层次化的...Series unstack: 将层次化的Series转换回数据框形式 append: 将一行或多行数据追加到数据框的末尾 分组 聚合 转换 过滤 groupby:按照指定的列或多个列对数据进行分组 agg...计算分组的累积和、最小值、最大值、累积乘积 数据清洗 dropna: 丢弃包含缺失值的行或列 fillna: 填充或替换缺失值 interpolate: 对缺失值进行插值 duplicated: 标记重复的行...astype: 将一列的数据类型转换为指定类型 sort_values: 对数据框按照指定列进行排序 rename: 对列或行进行重命名 drop: 删除指定的列或行 数据可视化 pandas.DataFrame.plot.area...、趋势和季节性 pandas.plotting.parallel_coordinates:绘制平行坐标图,用于展示具有多个特征的数据集中各个样本之间的关系 pandas.plotting.scatter_matrix

    31510

    Python中Pandas库的相关操作

    2.DataFrame(数据框):DataFrame是Pandas库中的二维表格数据结构,类似于电子表格或SQL中的表。它由行和列组成,每列可以包含不同的数据类型。...4.选择和过滤数据:Pandas提供了灵活的方式来选择、过滤和操作数据。可以使用标签、位置、条件等方法来选择特定的行和列。...8.数据的合并和连接:Pandas可以将多个DataFrame对象进行合并和连接,支持基于列或行的合并操作。...9.时间序列数据处理:Pandas对处理时间序列数据提供了广泛的支持,包括日期范围生成、时间戳索引、重采样等操作。...# 查看DataFrame的统计信息 df.describe() 数据选择和过滤 # 选择单列 df['Name'] # 选择多列 df[['Name', 'Age']] # 使用条件选择数据

    31130

    数据整合与数据清洗

    每次爬虫获取的数据都是需要处理下的。 所以这一次简单讲一下Pandas的用法,以便以后能更好的使用。 数据整合是对数据进行行列选择、创建、删除等操作。...01 行列操作 选择单列。可以直接用列名选择,也可以通过ix、iloc、loc方法进行选择行、列。 ix方法可以使用数值或者字符作为索引来选择行、列。 iloc则只能使用数值作为索引来选择行、列。...选择多列。ix、iloc、loc方法都可使用。 只不过ix和loc方法,行索引是前后都包括的,而列索引则是前包后不包(与列表索引一致)。 iloc方法则和列表索引一致,前包后不包。...between方法,查询数据在某个范围的记录。...03 数据分箱 分箱法包括等深分箱(每个分箱样本数量一致)和等宽分箱(每个分箱的取值范围一致)。 其中Pandas的qcut函数提供了分箱的实现方法,默认是实现等宽分箱。

    4.6K30

    针对SAS用户:Python数据分析库pandas

    可以认为Series是一个索引、一维数组、类似一列值。可以认为DataFrames是包含行和列的二维数组索引。好比Excel单元格按行和列位置寻址。...PROC PRINT的输出在此处不显示。 下面的单元格显示的是范围按列的输出。列列表类似于PROC PRINT中的VAR。注意此语法的双方括号。这个例子展示了按列标签切片。按行切片也可以。...也要注意Python如何为数组选择浮点数(或向上转型)。 ? 并不是所有使用NaN的算数运算的结果是NaN。 ? 对比上面单元格中的Python程序,使用SAS计算数组元素的平均值如下。...缺失值的识别 回到DataFrame,我们需要分析所有列的缺失值。Pandas提供四种检测和替换缺失值的方法。...显然,这会丢弃大量的“好”数据。thresh参数允许您指定要为行或列保留的最小非空值。在这种情况下,行"d"被删除,因为它只包含3个非空值。 ? ? 可以插入或替换缺失值,而不是删除行和列。.

    12.1K20

    Pandas 学习手册中文第二版:1~5

    创建数据帧期间的行对齐 选择数据帧的特定列和行 将切片应用于数据帧 通过位置和标签选择数据帧的行和列 标量值查找 应用于数据帧的布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章中的示例...访问数据帧内的数据 数据帧由行和列组成,并具有从特定行和列中选择数据的结构。 这些选择使用与Series相同的运算符,包括[],.loc[]和.iloc[]。...由于存在多个维度,因此应用这些维度的过程略有不同。 我们将通过首先学习选择列,然后选择行,在单个语句中选择行和列的组合以及使用布尔选择来检查这些内容。....jpeg)] 在行和列中进行选择 通常的做法是选择由一组行和列组成的数据子集。...这是一个与布尔选择类似的过程,在该过程中,我们选择了除要删除的行以外的所有行。 假设我们要从sp500中除去除前三个记录以外的所有记录。 执行此任务的片是[:3],它返回前三行。

    8.3K10

    图解pandas模块21个常用操作

    经过多年不懈的努力,Pandas 离这个目标已经越来越近了。 下面对pandas常用的功能进行一个可视化的介绍,希望能让大家更容易理解和学习pandas。...9、列选择 在刚学Pandas时,行选择和列选择非常容易混淆,在这里进行一下整理常用的列选择。 ? 10、行选择 整理多种行选择的方法,总有一种适合你的。 ? ? ?...11、返回指定行列 pandas的DataFrame非常方便的提取数据框内的数据。 ? 12、条件查询 对各类数值型、文本型,单条件和多条件进行行选择 ? ?...13、聚合 可以按行、列进行聚合,也可以用pandas内置的describe对数据进行操作简单而又全面的数据聚合分析。 ? ?...14、聚合函数 data.function(axis=0) 按列计算 data.function(axis=1) 按行计算 ? 15、分类汇总 可以按照指定的多列进行指定的多个运算进行汇总。 ?

    9K22

    一文讲述Pandas库的数据读取、数据获取、数据拼接、数据写出!

    其实Pandas能实现的功能,远远不止这些,关于利用该库如何实现数据清晰和图表制作,不是本书的研究范围,大家可以下去好好学习这个库。 在使用这个库之前,需要先导入这个库。...usecols=None,表示选择一张表中的所有列,默认情况不指定该参数,也表示选择表中的所有列。 usecols=[A,C],表示选择A列(第一列)和C列(第三列)。...而usecols=[A,C:E],表示选择A列,C列、D列和E列。 usecols=[0,2],表示选择第一列和第三列。...方法1:iloc+切片 # 选取前3行数据的所有列 df.iloc[:3,:] 方法2:loc+标签数组 # 选取地区1和地区3这两行的武汉、孝感、广水列 df.loc[["地区1","地区3"],['...武汉','孝感','广水']] 方法3:iloc+切片+位置数组 # 选取所有行的第2和第5列数据 df.iloc[:,[1,4]] 方法4:loc+切片+标签数组 # 选取地区1和地区2这两行的武汉和广水列

    8.2K30

    Pandas数据处理——渐进式学习1、Pandas入门基础

    ]数组切片 用标签提取一行数据 用标签选择多列数据 用标签切片,包含行与列结束点 提取标量值 快速访问标量:效果同上 用整数位置选择: 用整数切片:  显式提取值(好用) 总结  ---- 前言         ...Pandas 适用于处理以下类型的数据: 与 SQL 或 Excel 表类似的,含异构列的表格数据; 有序和无序(非固定频率)的时间序列数据; 带行列标签的矩阵数据,包括同构或异构型数据; 任意其它形式的观测...处理 DataFrame 等表格数据时,index(行)或 columns(列)比 axis 0 和 axis 1 更直观。...用这种方式迭代 DataFrame 的列,代码更易读易懂: for col in df.columns: series = df[col] 大小可变与数据复制 Pandas 所有数据结构的值都是可变的...# 通过numpy生成一个6行4列的二维数组,行用index声明行标题,列用columns声明列标题 df = pd.DataFrame(np.random.randn(6, 4), index=dates

    2.2K50

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券