数据透视表是我们现在在出数据分析经常要用到的一个工具,想当年我在学这个的时候也是跟随着网上的教程一步一步来的,今天给大家放一些数据透视的教学视频,供大家学习哈! 1. 创建一个数据透视表 ?...2.认识数据透视表结构 ? 3.活动字段的折叠与展开 ? 4.自定义分裂样式 ?
英文出处:http://pbpython.com/pandas-pivot-table-explained.html 中文翻译: http://python....
日常Excel业务报表中,我们有时需要对透视过的数据进行各种运算,运算完成后再次进行透视,本文提供一种简便方案,可以进行透视表再透视,数据源更新不影响刷新使用。...我们可以把这个问题拆分成两步: 汇总各个城市温度超过35度的天数(第一次透视) 对于第一步汇总结果超过3天的城市进行再次汇总(对以上透视结果再透视) 首先将数据源导入Power Pivot(Excel...可在此下载清晰版本(约13MB): 链接: http://pan.baidu.com/s/1bpvVFAJ 密码: 66e3 此案例仅仅使用了一个简约的DAX函数-summarize,就可以方便的进行多重数据透视处理...此处只是为了展示透视再透视这个功能的用法,方便我们用到有需要的工作内容当中去。
一、概述 openpyxl提供对透视表的读取支持,以便将它们保留在现有文件中。pivot表的规范(虽然是扩展的)并不明确,也不希望客户机代码能够创建pivot表。...但是,应该可以编辑和操作现有的透视表,例如更改它们的范围或是否应该自动更新设置。 需求:目前是数据源改变时,透视表的数据没有变化,因此需要刷新透视表才行。...TypeError: Value must be a sequence 创建透视表 现有一个4567.xlsx,内容如下: ? 在这个表,我们来创建一下透视表。...点击插入-->数据透视表-->数据透视表 区域选择数据部分 ? 点击确定 ? 选择2个列,如下图 ? 效果如下: ? 准备好了,先来删除最后一条数据,赵六。会发现透视表的总计数字并没有变化。 ?...使用openpyxl来刷新一下透视表 # !
什么是透视表? 经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: ? 而数据透视表可以快速抽取有用的信息: ? pandas也有透视表?...可多选 index:行分组键,一般是用于分组的列名或其他分组键,作为结果DataFrame的行索引 columns:列分组键,一般是用于分组的列名或其他分组键,作为结果DataFrame的列索引 aggfunc...注意,在所有参数中,values、index、columns最为关键,它们分别对应excel透视表中的值、行、列: ?...看每个城市(行)每类商品(列)的总销售量,并汇总计算 result4 = pd.pivot_table(data,index=['城市'],columns=['商品类别'],aggfunc=[np.sum
今天要跟大家分享的内容是数据透视表多表合并——字段合并!...因为之前一直都没有琢磨出来怎么使用数据透视表做横向合并(字段合并),总觉得关于表合并绍的不够完整,最近终于弄懂了数据透视表字段合并的思路,赶紧分享给大家!...数据仍然是之前在MS Query字段合并使用过的数据; 四个表,都有一列相同的学号字段,其他字段各不相同。 建立一个新工作表作为合并汇总表,然后在新表中插入数据透视表。...你会发现软件自动将三个表的字段都合并到一个汇总表中,行标签是主字段(学号),列字段是其他非唯一字段(地理、历史、数学、英语、政治、语文、政治、综合、总分)。 ?...此时已经完成了数据表之间的多表字段合并! ? 相关阅读: 数据透视表多表合并 多表合并——MS Query合并报表
R1C1", _ TableName:="数据透视表1", _ DefaultVersion:=4 'xlPivotTableVersion10=1(03)11=2()12=3(...)14=4(2010)~15=5(2013)6(2016) '必须在表激活情况下才能操作表中的数据透视表 With ActiveSheet.PivotTables("数据透视表1") '...xlRepeatLabels 'xlRepeatLabels重复,xlDoNotRepeatLabels不重复(默认) '总计 .ColumnGrand = False '.ColumnGrand列....RowGrand行'默认都启用True '行列筛选分类汇总域 pf = Array("类型", "拣货员名称", "逻辑区号", "任务领取时间") For Each..., xlCount .AddDataField .PivotFields("实际拣货量"), "件", xlSum '全选透视表 .PivotSelect "", xlDataAndLabel
利用数据透视表进行多表合并大体上分为两种情况: 跨表合并(多个表在同一工作薄内) 跨工作薄合并(多个表分别在不同工作薄内) 跨表合并(工作薄内表合并) 对于表结构的要求: 一维表结构 列字段相同 无合并单元格...本案例所用到的数据结构如下: 四个表(同一工作薄) 列字段相同(类别、销售数量、销售金额) 表名(郑州、南阳、新乡、洛阳) ?...此时软件会生成一个默认的透视表样式,需要我们自己对透视表结构、字段做细微调整。 ? 将页字段名重命名为地区,将行标签命名为类别(双击或者在左上角名称框中命名) ?...如果你想让地区字段进入到透视表的行位置,也很简单,把地区字段拖入行(类别位置之前)。 ? 表间合并(工作薄内)就是这么简单。...如果你觉得现有的透视表不符合自己的要求,也可以自己调整字段。 省份字段调入列区域。 ? 去掉列汇总项。 ? 其实那个销售金额和销售数量两个字段也是可以左右调换的。
Sub 透视筛选(pf, pv, v) With ActiveSheet.PivotTables("数据透视表1").PivotFields(pf) .EnableMultiplePageItems...不存在 Else pii.Visible = v '存在 End If Next End With End Sub 调用例子: Call 透视筛选...("层数", Array("all"), False) '全部选中 Call 透视筛选("储位编码", Array("AA52"), True)
数据透视表将每一列数据作为输入,输出将数据不断细分成多个维度累计信息的二维数据表。...在实际数据处理过程中,数据透视表使用频率相对较高,今天云朵君就和大家一起学习pandas数据透视表与逆透视的使用方法。...默认聚合所有数值列 index 用于分组的列名或其他分组键,出现在结果透视表的行 columns 用于分组的列名或其他分组键,出现在结果透视表的列 aggfunc 聚合函数或函数列表,默认为'mean'...行索引和列索引都可以再设置为多层,不过行索引和列索引在本质上是一样的,大家需要根据实际情况合理布局。...是一种特殊的数据透视表默认是计算分组频率的特殊透视表(默认的聚合函数是统计行列组合出现的次数)。
Pandas 透视表概述 数据透视表(Pivot Table)是一种交互式的表,可以进行某些计算,如求和与计数等。所进行的计算与数据跟数据透视表中的排列有关。...之所以称为数据透视表,是因为可以动态地改变它们的版面布置,以便按照不同方式分析数据,也可以重新安排行号、列标和页字段。每一次改变版面布置时,数据透视表会立即按照新的布置重新计算数据。...另外,如果原始数据发生更改,则可以更新数据透视表。...= custom_info.groupby('注册年月')[['会员卡号']].count() month_count.columns = ['月增量'] month_count.head() 用数据透视表实现相同功能...:dataframe.pivot_table() index:行索引,传入原始数据的列名 columns:列索引,传入原始数据的列名 values: 要做聚合操作的列名 aggfunc:聚合函数 custom_info.pivot_table
数据透视表(Pivot Table)是常用的数据汇总工具,可以通过控制数据的排列灵活地进行数据分析,进而挖掘出数据中最有价值的信息。掌握数据透视表,已经成为数据分析从业者必备的一项技能。..."pclass"后,现在透视表具有二层行级索引,一层列级索引。...仔细观察透视表发现,与上面【3】中的"添加一个列级索引",在分组聚合效果上是一样的,都是将每个性别组中的成员再次按照客票级别划分为3个小组。...当然,行索引和列索引都可以再设置为多层,不过,行索引和列索引在本质上是一样的,大家需要根据实际情况合理布局。 6....保存透视表 数据分析的劳动成果最后当然要保存下来了,我们一般将透视表保存为excel格式的文件,如果需要保存多个透视表,可以添加到多个sheet中进行保存。 save_file = ".
数据透视表 数据透视表excel中有这个分析数据的功能,在R语言中同样可以实现。对一个表格分组计算相应的特征,比如不同国家所有城市的人口总数等。...R提供了apply系列函数,包括apply,lapply,sapply,tapply,vapply等,可以对二维数据进行计算,并且可以分组进行统计,类似于Excel中的数据透视表功能。...state.division, mean) sort(tapply(state.x77$Income, state.division, mean)) sort(tapply(state.x77[size=5][b]数据透视表.../size] R提供了apply系列函数,包括apply,lapply,sapply,tapply,vapply等,可以对二维数据进行计算,并且可以分组进行统计,类似于Excel中的数据透视表功能
小勤:前面你的很多个关于PowerQuery的内容里都涉及到逆透视,这到底是什么意思呢?这个概念一直觉得似懂非懂的,有没有简单点的语句总结一下? 大海:嗯,一维表和二维表的概念了解吗?...小勤:好像是算知道的,一个一对一,一个一对多?...首先,关于一维表和二维表、透视和逆透视,我先做个简单的例子给你们看一下。 大海:其实,所谓透视,就是从一维表到二维表(甚至更多维度)形成交叉汇总的过程;相反,从二维表向一维表的过程就是逆透视。...那么在逆透视的时候,我们是将横着的那些内容(列:上面的ABCDE)变成竖着(行),而不需要转变的列(店铺)可以理解为一个支点(轴),即横着的内容(列:ABCDE)以不需要转变的列(店铺)为中心,拉成一个清单...最后的建议是,有时间先多练习一下数据透视。比如可以练一下没有PQ的时候,用数据透视做逆透视的方法,具体参考案例《二维表转一维表用多重数据透视?弱爆了!》,体会一下两者之间的差别和优缺点。
我们先回顾一下使用Excel进行数据透视表的操作过程: 首先,选中希望进行数据透视的数据,点击数据透视表,指定数据透视表的位置。 ? ?...然后就到了最经典的勾选的部分,Excel给了我们筛选,行,列,值四个选择的地方。 ?...敲黑板,重点来了: index=列 colums=行 values=值 有了这三个函数,最最最基础的一个数据透视表就算是完成了。...最后给大家一个完整的pd.pivot代码: data_pivot=pd.pivot_table(data,index=['希望出现在透视表列位置的列名称'],columns=[‘希望出现在透视表列行置的列名称...'],values=['希望出现在透视表列行置的值名称'],aggfunc=sum,fill_value=0,margins=True)
交叉表 不要被名字所迷惑,其实它也是二维的表结构,与pivot_table很相似,且是一个特殊的数据透视函数,它默认统计分组项的频次。...其中 index, columns是必选参数,分别是行索引、列索引。 其他参数可以理解为与pivot_table一致,所以说它是一种特殊的透视表。...0 1 3肉类 0 1 1 2蔬菜 1 1 0 2All 3 2 2 7 如果想使用聚合函数,即aggfun参数,同时必须指明values列,
在Python中,有多个库可以用来创建和操作数据透视表,其中最常用的是pandas库。 下面我将介绍如何使用Python中的pandas库来实现数据透视表和透视分析。...df = pd.read_csv('data.csv') # 根据实际情况修改文件路径和格式 3、创建数据透视表:使用pandas的pivot_table()函数可以轻松创建数据透视表。...该函数的主要参数包括:index(用于分组的列)、columns(用于创建列的列)、values(用于聚合计算的列)和aggfunc(聚合函数,默认为求平均值)。...下面是一些常用的操作: 筛选数据:可以基于数据透视表中的特定值或条件筛选出我们感兴趣的数据。...filtered_data = pivot_table[pivot_table['category'] == 'A'] 计算汇总统计量:可以对数据透视表中的行、列或整个表格进行统计计算,比如求和、平均值等
透视,或者称为列的透视,是一维表转换到二维表的过程;逆透视,或者称为列的逆透视,是把二维表转换到一维表的过程。 1 逆透视列 逆透视列可以将列转换为行,并对数据进行拆分操作。...逆透视列操作主要针对的是有多列数据的表单,这类表单的特点是一般有一个主列,该列中数值多数情况下都是非重复值;而其他数据列类型基本相同,其数值都是对主列中数据某一属性的描述。...对于这种有一定汇总关系的表单,可以将主列外的其他多列数据合并成一个列,即将列转换成行,然后将主列中原始值扩展成多个重复数值与合并后的新列产生对应关系,以便进行后续分析计算。...对于上图中的二维表,选中部门列,点击右键,选择逆透视其他列,得到一维表。...因此,当数据源中出现新列时,也不会被进行逆透视操作。 2 透视列 透视列操作是将列下所有的N个非重复数据转换成N个新列,然后对原始数据进行汇总合并来计算新列中的每一行值。
请思考: 1 透视表是什么?会用Excel做透视表吗? 2 pandas如何做透视表分析?使用什么函数?函数的参数如何选择和设置? 1 透视表介绍 数据透视表是一个用来总结和展示数据的强大工具。...2 导入数据 代码 # 导入Python库 import numpy as np import pandas as pd # 读取Excel文件,并且查看前5行数据集 df = pd.read_excel...3 数据透视表分析 简单的透视表,指定DataFrame里面需要透视的一个index,以Name为index做透视表。...请思考:透视表默认的计算逻辑和展示方式是什么? 在数据框中选择多个index做透视表。...通过对参数aggfunc传递字典来实现对参数values里面指定的列执行所需的聚合计算操作。
你需要做的是定义好数据透视表的输出位置: 新工作表:软件会为透视表输出位置新建一个工作表; 现有工作表:软件会将透视表输出位置放在你自定义的当前工作表目标单元格区域。...一共四个位置:筛选器存放的字段属于全局层面的筛选,列字段和行字段大多适用于分类或者数量变量值,而值字段则更多存放数值型变量。...此时透视表会输出行变量为地区,列表变量为产品,值为销量的结果。 默认的标签名为行标签、列标签,我们可以通过双击标签单元格更改名称。 ? 如果不想要汇总项的话,可以通过菜单设置取消汇总项。...在数据透视表工具——设置——总计下拉菜单中可以取消或回复行列汇总选项。 ? 关于行列的位置问题,本例中地区和产品的行列可以互换。 ?...当然透视表的行列字段位置是可以同时容纳多列变量属性的。 本例中我们可以将地区、城市调入行字段、将成色、二手货调入列字段,将销售数量调入值字段。 ?
领取专属 10元无门槛券
手把手带您无忧上云