在编译过程稿,编译器会完成大部分工作,将把用C语言提供的相对比较抽象的执行模型表示的程序转化成处理器执行的非常基本的指令。
结果是负数!!!! 这个结果理论上是非常不应该的,这已经违背了我们的常识,毕竟正数的乘积,最后的结果应该还是一个正数,但是这里出现负数的情况,虽然结果不对,但是好在即使我们各种交换顺序,结果都是一致的
在开始先来看一个有意思的东西: root@localhost: lldb (lldb) print (500 * 400) * (300 * 200) (int) $0 = -884901888 (lldb) print ((500 * 400)* 300) * 200 (int) $1 = -884901888 (lldb) print ((200 * 500) * 300) * 400 (int) $2 = -884901888 (lldb) print 400 * (200 * (300 * 500
通常也被成为“网际套接字地址结构”,以sockaddr_in命名,定义在<netinet/in.h>头文件中。
在探讨指针之前,我们首先明确它的定义:指针是一种特殊的变量,它存储了另一个变量的内存地址。指针在编程过程中有着不可或缺的作用,不仅能提高编程的速率,指针的使用也能增加代码的灵活性,能够深入程序员对代码的理解。
结构体是C/C++两种语言中的基础语法, C语言中的结构体只是一个存粹的数据集合类型的描述,它只有数据成员而没有成员方法。C++中的结构体则被赋予为一个类定义的角色,它可以有数据成员也可以有成员方法。OC语言源自于C语言,它是面向对象的C语言,自然结构体的概念就和C语言中的定义保持一致。
可执行程序是为了实现某个功能而由不同机器指令按特定规则进行组合排列的集合。无论高级还是低级程序语言,无论是面向对象还是面向过程的语言最终的代码都会转化为一条条机器指令的形式被执行。为了管理上的方便和对代码的复用,往往需要将某一段实现特定功能的指令集合进行抽离和处理从而形成了函数的概念,函数也可以称之为子程序或者子例程。出现函数的概念后可执行程序的机器指令集合将不再是单一的一块代码,而是由多个函数组成的分块代码,这样可执行程序就变成了由函数之间相互调用这种方式来构建和组织了。
最近在学习golang,写下学习笔记提升记忆。为了看起来不是那么枯燥,本学习笔记采用分析代码的形式。
网上有文章说C语言的“位域”(bit fields)有可移植性的问题,原因是不同的编译器对位域的实现不同。
Java基础 | 数据库 | Android | 学习视频 | 学习资料下载 最新通知 按照我去培训机构的学习经历,给初学还有自学Java 的同学一个基本的学习脉络,希望对大家有帮助。 不建议找到一本书死啃,没啥用,不要有这一页看不明白我就不往下看的想法。计算机的学习和原来的代数、几何不大一样。不是用几个公理推出所有结果的。! 首先我们学习Java需要有目标!应该知道先学哪些再学哪些 !不是盲目的去乱学去! ★【新】回复“测试题”获取昨天发布的软件工程师初级阶段测试题答案 ★【新】回复“学习资料”获取jav
·numpy.array(object,dtype,copy,order,subok,ndmin)
在HotSpot虚拟机中,对象在内存中存储的布局可以分为3块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。下图是普通对象实例与数组对象实例的数据结构:
1).IPv4套接字地址结构 IPv4套接字地址结构通常也称为“网际套接字地址结构”,它以sockaddr_in命名,定义在
但首先我们需要知道的是,在C语言中,数据在内存中的存储是以变量的形式存储的。每个变量都有一个地址,指向内存中的特定位置。变量的值存储在这个地址对应的内存单元中。不同类型的变量在内存中占据不同大小的空间,例如整数型变量通常占据4个字节的空间,而字符型变量通常占据1个字节的空间。所以说实际上数据的存储也是由于类型所占字节不同而改变的。
#2.直接编译 gcc -o 1.out daytimetcpcli.c #错误提示如下: daytimetcpcli.c:1:17: fatal error: unp.h: No such file or directory #include "unp.h" ^ compilation terminated. #在../key目录下找到unp.h。继续提醒没有<sys/fiflo.h>从网上下载继续出问题。
正如大家所了解的,Java虚拟机的内存区域被划分为程序计数器、虚拟机栈、本地方法栈、堆和方法区。(什么?你还不知道,赶紧去看看《Java虚拟机内存结构及编码实战》)这次要介绍的栈帧(Stack Frame),就是Java虚拟机中的虚拟机栈(Virtual Machine Stack)的基本元素,它也是用于支持Java虚拟机进行方法调用和方法执行背后的数据结构,了解了它就可以更好地理解Java虚拟机执行引擎是如何运行的。
-m32 强制编译为32位,-g带debug信息,-o0 编译器不进行优化, -o输出文件名
在Linux网络编程中,经常碰到网络字节序与主机字节序的相互转换。说到网络字节序与主机字节序需要清晰了解以下几个概念。
在认识指针之前,我们先要了解的是“内存”。 一般在购买电脑的时候,我们会很在意“内存”的大小,一般电脑的“内存”大小有4G、8G或者16G 他们之间的换算方式是:
每个ndarray都有一个关联的数据类型(dtype)对象。此数据类型对象(dtype)告知我们有关数组布局的信息。这意味着它为我们提供了有关以下信息:
在CTF比赛中, CTF逆向题目除了需要分析程序工作原理, 还要根据分析结果进一步求出FLAG。逆向在解题赛制中单独占一类题型, 同时也是PWN题的前置技能。在攻防赛制中常与PWN题结合。CTF逆向主要涉及到逆向分析和破解技巧,这也要求有较强的反汇编、反编译、加解密的功底。
可以理解成一个有意思的问题,假如地址 addr1 上有一个函数func1,长度为len, 将这个函数 整体换一个位置,挪到 addr2, 移动之后的函数成为func2
变长参数,指的是函数参数数量可变,或者说函数接受参数的数量可以不固定。实际上,我们最开始学C语言的时候,就用到了这样的函数:printf,它接受任意数量的参数,向终端格式化输出字符串。本文就来探究一下,变长参数函数的实现机制是怎样的,以及我们自己如何实现一个变长参数函数。在此之前,我们先来了解一下参数入栈顺序是怎样的。
https://cloud.tencent.com/developer/article/1549815
对于上面的结果,也许你并不感到意外。如果你的疑问是为什么不是2而是3,那么建议你看看《谈一谈字节序的问题》。同样是指针类型,b和c有什么区别? 一个是指向整型的指针,一个是指向char型的指针,当它们执行算术运算时,它们的步长就是对应类型占用空间大小。 即
基于C++的调试对于已经到Python虚拟机中存储起来的字节码命令是无法被观察到的,我们只能把它们解析成AST才能看懂字节码在解释器内存中的状态,所以这里我们借用Python解释器里的C_API来输出我们的对象:
我们知道,目前为止Apple的所有iOS设备都采用的是ARM处理器。ARM处理器的特点是体积小、低功耗、低成本、高性能,所以很多手机处理器都基于ARM,ARM在嵌入式系统中也具有广泛的应用。 ARM处理器的指令集对应的就是ARM指令集。armv6|armv7|armv7s|arm64都是ARM处理器的指令集,这些指令集都是向下兼容的,例如arm64指令集兼容armv7,只是使用armv7的时候无法发挥出其性能,无法使用arm64的新特性,从而会导致程序执行效率没那么高。在iPhone5s及其之后的iOS设备指令集都是ARM64。 还有两个我们也很熟悉的指令集:i386和x86_64是Mac处理器的指令集,i386是针对intel通用微处理器32架构的。x86_64是针对x86架构的64位处理器。所以当使用iOS模拟器的时候会遇到i386|x86_64,因为iOS模拟器没有ARM指令集。
在Linux内核中,为了兼容原有的代码,或者符合某种规范,并且还要满足当前精度日益提高的要求,实现了多种与时间相关但用于不同目的的数据结构:
WebAssembly, 简称WASM, 是一种以安全有效的方式运行可移植程序的新技术,主要针对Web平台。 与 ASM.js类似, WASM的目标是对高级程序中间表示的适当低级抽象,即,WebAssembly代码旨在由编译器生成而不是由人来写。
在了解内存对齐之前,先来明确几个关于操作系统的概念,更加方面我们对内存对齐的理解。
为了阅读Linux内核源代码,是需要一些汇编语言知识的。因为与架构相关的代码基本上都是用汇编语言编写的,所以掌握一些基本的汇编语言语法,能够更好地理解Linux内核源代码,甚至可以对各种架构的差异有一个更深入的理解。
什么是对齐,以及为什么要对齐: 现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。 对齐的作用和原因: 各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来
在C中,我们只了解到有两种传参方式,一种是值传递,另外一种是传递指针,一般情况下我们选择使用指针传递参数。在C++中,又新增了一种传参方式,那就是引用(type &),引用传参给我们带来了更好的体验。那三者的具体区别在哪里呢?
科学巨匠尚且如此,何况芸芸众生呢。我们不可能每个软件都从头开始搞起。大部分时候,我们都是利用已有的软件,不管是应用软件,还是操作系统。所以,对于MIPS架构来说,完全可以把在其它架构上运行的软件拿来为其所用。
在学习go语言时,做算法题会很经常遇到go语言的各种int类型,为什么会有int、int8、int16等等的类型呢?为什么不像java一样,只个int类型呢?
本文主要讲解一下在 JVM 中如何保存 Java 对象以及 Java 对象指针压缩相关的东西。
之前在栈溢出漏洞的利用和缓解中介绍了栈溢出漏洞和一些常见的漏洞缓解 技术的原理和绕过方法, 不过当时主要针对32位程序(ELF32). 秉承着能用就不改的态度, IPv4还依然是互联网的主导, 更何况应用程序. 所以理解32位环境也是有必要的. 不过, 现在毕竟已经是2018年了, 64位程序也逐渐成为主流, 尤其是在Linux环境中. 因此本篇就来说说64位下的利用与32位下的利用和缓解绕过方法有何异同.
官方文档对sync.WatiGroup的描述是:一个waitGroup对象可以等待一组协程结束,也就等待一组goroutine返回。有了sync.Waitgroup我们可以将原本顺序执行的代码在多个Goroutine中并发执行,加快程序处理的速度。其实他与java中的CountdownLatch类似,用于阻塞等待所有任务完成之后再继续执行。我们来看官网给的一个例子,这个例子使用waitGroup阻塞主进程,并发获取多个URL,直到完成所有获取:
特别鸣谢:木芯工作室 孔子学鼓琴师襄子,十日不进。师襄子曰:“可以益矣。”孔子曰:“丘已习其曲矣,未得其数也。”有间,曰:“已习其数,可以益矣。”孔子曰:“丘未得其志也。”有间,曰:“已习其志,可以益矣。”孔子曰:“丘未得其为人也。”有间,有所穆然深思焉,有所怡然高望而远志焉。曰:“丘得其为人,黯然而黑,几然而长,眼如望羊,如王四国,非文王其谁能为此也!”师襄子辟席再拜,曰:“师盖云文王操也。”
本文主要讲解了信息在计算机中是如何存储和表示的,以及编译器和汇编器如何将高级语言转换成机器语言。同时,本文还涉及了数据结构、计算机存储、寻址方式、字节序、数据类型、字符串的表示和代码的表示等方面的内容。
上一篇文章我们讲到了JVM为了提升解释的性能,引入了JIT编译器,今天我们再来从整体的角度,带小师妹看看JDK14中的JVM有哪些优化的方面,并且能够从中间得到那些启发。
MongoDB的文档类似于JSON,JSON是一种简单的额表示数据的方式,仅包含6种数据类型,分别是:null、布尔、数字、字符串、数组和对象。
构造方法是每一个类独有的,并不能被子类继承,因为构造方法没有返回值,子类定义不了和父类的构造方法一样的方法。但是在同一个类中,构造方法可以重载
MongoDB的文档类似于JSON,JSON是一种简单的表示数据的方式,仅包含6种数据类型,分别是:null、布尔、数字、字符串、数组和对象。
我们在编写C/C++程序时,32位程序和64位程序的代码有何区别?如何编写既可以编译成32位程序又可以编译成64位程序的代码?
对于C语言开发的程序员来说,在内存管理方面,必须负责每一个对象的生命周期,从有到无。
领取专属 10元无门槛券
手把手带您无忧上云