图表库正变得越来越流行。小型开发团队只需导入HTML5 图表库和 JS 库即可构建具有数据可视化的全功能金融应用程序。
vonic 一个基于 vue.js 和 ionic 样式的 UI 框架,用于快速构建移动端单页应用,很简约。 中文文档 | github地址 | 在线预览
RAWGraphs是一个在线的开源工具和数据可视化框架,用来处理Excel表中的数据。你只需将数据导入到RAWGraphs中,设计你想要的图表,然后将其导出为SVG格式或PNG格式的图片。此外,上传至RAWGraphs的数据只会在web端在线进行处理,保证了数据的安全性。
数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像, 同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。 图表库 C3 – 以 d3 为基础构建的可重用图表库 Chart.js – 带有 canvas 标签的图表 Chartist.js – 具有强大浏览器兼容能力的响应式图表 Dimple – 适用于业务分析的面向对象的 API Dygraphs – 适用于大型数据集的交互式线性图表库 Echarts – 针对
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
Element,一套为开发者、设计师和产品经理准备的基于 Vue 2.0 的桌面端组件库
1.JSON处理器 fastjson fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。 主要特点: 快速FAST (比其它任何基于Java的解析器和生成器更快,包括jackson) 强大(支持普通JDK类包括任意Java Bean Class、Collection、Map、Date或enum) 零依赖(没有依赖其它任何类库除了JDK) 示例代码: import com.alibaba.fastjson.JSON; Group group = n
1.基础知识:网站基本原理,html,python,多进程/多线程/协程等(必学)
可视化信息以易于阅读的视觉化内容正在被越来越多的人所青睐。可视化形式呈现信息的需求也随之增加,因此近年来涌现出了许多数据可视化工具。对于不熟悉数据可视化领域的人来说,最好的方法是尝试一些现成的解决方案来快速制作标准化的图表。对于拥有更多技术专长、经验丰富的用户,最好的办法是使用更灵活的库。 下面与大家分享九大数据可视化库,希望你可以找到最适合的一款。
大数据时代,需要工具实现数据可视化,需要倚仗大数据可视化工具,这些工具中不乏有适用于Flash、HTML5、NET、Java、Flex等平台的,也不乏有适用于常规图表报表、金融图表、工控图表、甘特图、流程图、数据透视表、OLAP多维分析等图表报表开发的。
数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。如果你仍然坚持使用Matplotlib(这太神奇了),Seaborn(这也很神奇),Pandas(基本,简单的可视化)和Bokeh,那么你真的需要停下来了解一下新事物了。例如,python中有许多令人惊叹的可视化库,而且通用化程度已经很高,例如下面这五个:
如果您了解并使用上面提到的库,那么您就处于进化的正确轨道上。它们可以帮助生成一些令人拍案的可视化效果,语法也不难。一般来说,我更喜欢Plotly+Cufflinks和 D3.js. 以下详细道来:
本文介绍了一款名为pyecharts的Python库,它可以为Python程序提供各种图表类型的绘制功能,包括折线图、散点图、柱状图、饼图等。该库基于echarts库,具有高度可定制性和丰富的图表类型,同时还支持动态图表和实时更新。pyecharts可以用于数据分析、机器学习、金融量化等领域,是Python社区里非常流行的一款绘图库。
工欲善其事,必先利其器。好的工具可以大大提升你的工作效率,并获得身边人的羡慕和赞赏。今天,我们就来向小伙伴们分享一大波非常实用的工具,武装你的大脑。 ▲图表类 iCharts 简介:各种主题的开放图
俗话说的好:工欲善其事,必先利其器!一款好的工具可以让你事半功倍,尤其是在大数据时代,更需要强有力的工具通过使数据有意义的方式实现数据可视化,还有数据的可交互性;我们还需要跨学科的团队,而不是单个数据
俗话说“巧妇难为无米之炊”。数据时代,没有一款好的数据可视化分析工具,光有团队怎么行? 商场如战场,数据是把枪。亚马逊运用大数据为客户推荐商品信息,阿里用大数据成立了小微金融服务集团,而谷歌更是计划用大数据接管世界……不知不觉,数据已经成为我们生活中必不可少的利器。本文收集了各个平台各种行业的数据可视化分析工具,让你不仅大饱眼福,而且还可以让你事半功倍。 Excel Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也
来源:DataCastle数据城堡(ID:DataCastle2016)、大数据分析和人工智能(ID:datakong)
Chart.js 是一个功能强大且易于使用的图表库。 支持多种类型的图表,包括折线图、柱状图、饼图、雷达图等。 Chart.js 具有简单的 API 和丰富的配置选项, 使得在 Vue 中使用它非常方便。
一、Excel Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。
数据可视化之初级篇 零编程工具 1. Tableau Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决
从数据获得信息的最佳方式之一是,通过视觉化方式,快速抓住要点信息。另外,通过视觉化呈现数据,也揭示了令人惊奇的模式和观察结果,是不可能通过简单统计就能显而易见看到的模式和结论。
各个互联网公司通过大量的用户数据、信息进行统计分析,而这些大量繁杂的数据在经过可视化工具处理后,就能以图形化的形式展现在用户面前,清晰直观。随着各种数据的增加,这种可视化工具越来越得到开发者们的欢迎。 下面推荐30款可视化工具供大家选择和使用。 1.iCharts iCharts 提供了一个用于创建并呈现引人注目图表的托管解决方案。有许多不同种类的图表可供选择,每种类型都完全可定制,以适合网站的主题。iCharts 有交互元素,可以从Google Doc、Excel 表单和其他来源中获取
ChartDirector介绍 ChartDirector是一款小巧精细的商业图表库。其适用的语言范围非常广泛,包括.Net, Java, Asp, VB, PHP, Python, Ruby, C++等。ChartDirector既可以为WEB应用提供图表支持,还能为桌面应用提供良好的图表体验。除此之外,ChartDirector还能与MFC, Qt等界面框架无缝结合。这一点,在官方提供的帮助文档中即可窥知一二。在本系列文章中,也将以Qt应用程序框架作为基础,编写各种图表的应用实例。 正如上面
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。Tableau的客户包括巴克莱银行,Pandora和Citrix等企业
如果您是Vue开发的新手,您可能已经听过很多关于它的专业术语了,例如:单页面应用程序、异步组件、服务器端呈现等。
在这篇文章中,我将介绍AutoGen的多个代理的运行。这些代理将能够相互对话,协作评估股票价格,并使用AmCharts生成图表。
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。
摘要 Highcharts图表控件是目前使用最为广泛的图表控件。本文将从零开始逐步为你介绍Highcharts图表控件。通过本文,你将学会如何配置Highcharts以及动态生成Highchart图表。 ---- 目录 前言(Preface) 安装(Installation) 如何设置参数(How to set up the options) 预处理参数(Preprocess the options) 活动图(Live charts) ---- 一、前言(Preface) Highcharts是一个非常
Causal 是一个多维电子表格,能够处理从基本算术一直到 10 亿次计算的金融模型的一切。Causal 的前端是在 2019 年用 Create React App(CRA)构建的,它为我们提供了很好的服务——它只需要最小的初始设置,并允许快速迭代。随着我们的客户规模和复杂性的增加,性能变得越来越受到关注,我们达到了 CRA 设计支持的极限。最重要的是,CRA 本身并不支持跨多页应用程序的路由分割,所以我们的页面加载时间慢得令人沮丧。为了解决这些问题,我们改用 Next.js,将初始页面加载时间减少了 70%,并将开发者的体验提升到一个新的水平。
众多周知,图形和图表要比文本更具表现力和说服力。图表是数据图形化的表示,通过形象的图表来展示数据,比如条形图,折线图,饼图等等。可视化图表可以帮助开发者更容易理解复杂的数据,提高生产的效率和 Web 应用和项目的可靠性。
每天上班必须做的一件事情,就是打开我们全球最大的程序员交友社区GitHub,因为这上面有太多开源的宝贝了,每天都乐此不疲,深耕于此,当然也收获了很多有用的东西,写出来分享一下。
在现代前端开发中,图表和可视化数据呈现的重要性日益增长,ECharts 作为一款强大的数据可视化库广受欢迎。然而,如何将 ECharts 图表中的动态效果保存为一张 GIF 动图,并应用于 Vue2、Vue3、React 等热门框架中,是许多开发者面临的问题。本文旨在为大家详细介绍如何在各大前端框架中实现该功能,提供相关代码案例、QA 指引,以及最佳实践。
Qwik 是我进行 Web 项目开发的首选框架,而不是 Next.js。在本文中,我将探讨 Qwik 和 Next.js 的区别、优缺点。不过,我相信,由 Builder.io 创建的 Qwik 有潜力成为 Web 开发的未来。
在Bootstrap框架中并没有提供完整的响应式图表功能,不过可以引入强大的、基于JavaScript的、完全开源的第三方图表插件,并基于Bootstrap框架良好的兼容性来整合这些第三方插件,最终设计出性能优越的响应式图表 为了实现基于Bootstrap框架的响应式图表的设计,引用了Bootstrap框架、jQuery框架和ECharts插件所需要的脚本文件、样式文件和资源文件,并自定义了相关样式文件和资源文件
服务编程 Akka Toolkit:JVM中分布性、容错事件驱动应用程序的运行时间; Apache Avro:数据序列化系统; Apache Curator:Apache ZooKeeper的Java库; Apache Karaf:在任何OSGi框架之上运行的OSGi运行时间; Apache Thrift:构建二进制协议的框架; Apache Zookeeper:流程管理集中式服务; Google Chubby:一种松耦合分布式系统锁服务; Linkedin Norbert:集
今天为大家推荐一些翻译整理的大数据相关的非常棒的学习资源,希望能给大家一些帮助。 服务编程Akka Toolkit:JVM中分布性、容错事件驱动应用程序的运行时间; Apache Avro:数据序列化
star:91.5k 官网:https://d3js.org/ GitHub地址:https://github.com/mbostock/d3
ECharts 是一个基于 JavaScript 的开源可视化图表库,涵盖各行业图表,多达20多种图表和十几种组件,支持各种图表和组件的任意组合,满足各种需求,也是前端项目中大屏应用最多的。
你的程序有多么依赖数据?即使应用程序不完全面向业务,你也可能需要管理面板、仪表板、性能跟踪以及用户非常喜欢的类似分析功能的数据。
在众多的前端开发框架中,我最终选择了 Qwik[1],而不是 Next.js[2]。我的选择基于几个原因:开发者体验、信号机制、控制层面、能够使用更广泛的 React 生态系统,以及 Qwik 框架的前瞻性特性。Next.js 无疑是一个杰出的框架,我对此毫无保留。然而,Qwik 提供了如此吸引人的开发者体验和新颖的设计,每次使用它编码时,我都感到无比兴奋!
在大数据时代,离不开数据的处理和分析,这次来介绍一下数据可视化,在之后的文章中使用的工具都是Apache ECharts,它是一个基于 JavaScript 的开源可视化图表库。
摘要:本篇文章是"Python股市数据分析"两部曲中的第一部分,主要介绍金融数据分析的背景以及移动均线等方面的内容。 本篇文章是"Python股市数据分析"两部曲中的第一部分,内容基于我在犹他州立大学MATH 3900 (Data Mining)课程上的一次讲座。在这些文章中,我将介绍一些关于金融数据分析的基础知识,例如,使用pandas获取雅虎财经上的数据,股票数据可视化,移动均线,开发一种均线交叉策略,回溯检验以及基准测试。第二篇文章会介绍一些实践中可能出现的问题,而本篇文章着重讨论移动平均线。 注意:
现代社会早已进入读图时代,图像在一定上程度上取代了文字,占据了主导地位。对于数据分析来说,一张清晰的可视化图表确实比纷繁复杂的数字更清晰美观。随着科技的发展以及可视化需求的急剧增大,涌现了大批的数据可视化工具,通过对比分析市面上众多的数据可视化工具之后,我们挑选了几款给大家进行参考。
本篇文章是”Python股市数据分析”两部曲中的第一部分,内容基于我在犹他州立大学MATH 3900 (Data Mining)课程上的一次讲座。在这些文章中,我将介绍一些关于金融数据分析的基础知识,例如,使用pandas获取雅虎财经上的数据,股票数据可视化,移动均线,开发一种均线交叉策略,回溯检验以及基准测试。第二篇文章会介绍一些实践中可能出现的问题,而本篇文章着重讨论移动平均线。 注意:本篇文章所涉及的看法、意见等一般性信息仅为作者个人观点。本文的任何内容都不应被视为金融投资方面的建议。此外,在此提供的
在此开放资源中,面对金融领域多元关系表示的困境和时序事件表示需求,我们以OWL语义为基础,结合金融领域专业知识,融合超图概念和事件5W(When,where,Why,What,Who)定义构建了可通用化的金融时序超图本体模型(Finanical Temporal Hypergraph Ontology,FTHO)。
领取专属 10元无门槛券
手把手带您无忧上云