首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

金融数据】消费金融:大数据那点事?

数据同传统在本质上没有区别,主要区别在于模型数据输入的纬度和数据关联性分析。...风险评估过程中,如果数据纬度不全,高相关数据没有被考虑进来,对模型是一个的风险。信用风险评估模型缺少了重要风险因素的输入,其评估结果的偏离度就会较大,评估结果失效的可能性就很大。...相对于传统金融来讲,互联金融面对的客户风险较高,其面临的挑战更大,对数据对要求就会更高。 三、互联网金融行业的挑战 中国的互联网金融企业愿意从美国挖一些人才来提高自身水平。...大数据的优势: 1、用户行为数据成为数据 最好的数据还是金融数据,例如年龄、收入、职业、学历、资产、负债等信用数据,这些数据同信用相关度高,可以反映用户的还款能力和还款意愿,这些数据因子在模型中必不可少...第二种是利用共享贷款数据机制,第三方企业或者的P2P,防欺诈联盟共享贷款平台的贷款记录。其他贷款平台可以依据申请人在其他平台的贷款记录来决定是否提供贷款,降低欺诈风险。

3.8K51

金融科技&大数据产品推荐:易鑫大数据平台

易鑫大数据平台综合了机器学习、网络爬虫、指标体系、规则引擎、图数据库、流式计算等核心技术,整合线上线下多维度数据,可支持反欺诈、信用评分、贷前审批、贷中监控、贷后追踪等全方位的金融场景。...的产品投递 1、产品名称 易鑫大数据平台 2、所属分类 消费金融 金融科技·、征信、反欺诈、大数据安全 3、产品介绍 易鑫大数据平台综合了机器学习、网络爬虫、指标体系、规则引擎、图数据库、...4、应用场景/人群 产品的应用者包括人员、运营人员、销售人员等。易鑫旗下车贷服务及创新金融产品“开走吧”均使用该平台,让用户享受“秒级放贷”的极致体验。...5、产品功能 易鑫平台主要功能如下: 第一,指标体系; 平台所需要的多维度海量数据通过指标体系进行采集。...成立三年多来,易鑫集团发展突飞猛进,目前,已完成智能数据控管理、资产管理三中心的核心布局。2016年,易鑫平台的交易量超过26万台,总交易规模超过270亿元。

2.7K120
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    金融数据管理——海量金融数据离线监控方法

    作者:housecheng  腾讯WXG工程师 |导语  解决金融数据监控“开发门槛高”“重复工作多”的痛点,实现PSI计算性能十倍速提升。...背景 在金融业务上,质量和稳定是生命线,我们需要对所有已经上线的要素,如策略、模型、标签、特征等构建监控。...在过去,我们部署监控的方式为: 要素负责同学在要素上线前,通过spark\sql完成对监控指标的运算并例行化; 将监控指标运算结果出库mysql\tbase,用于指标的展示和告警; 告警系统轮询指标是否异常...,如多数要素都涉及PSI计算,只是告警阈值不一样;指标出库、配置告警等同样是重复相似操作。...小结 针对金融要素监控的“开发门槛高”“重复工作多”等问题,本文提出了“统一监控计算与检查工具”这一解决方案,本文详细论述了该方案TaskMaker、 Calculator、 Checker等各个模块的设计实现

    2.7K10

    互联网金融中的数据科学

    宜人贷数据数据科学家王婷根据自己在行业的实践经验和专业知识,从三方面来分享互联网金融中的数据科学。 ? 背景 有了互联网之后,大家可以在线上进行理财借款。...但在国内没有权威的征信机构来提供这些数据,对于互联网金融公司来说,收集这样的数据难度非常。而且传统评分卡的有效特征挖掘非常困难。 欺诈风险:欺诈风险包含了伪冒申请和欺诈交易。...知识图谱在金融中的应用场景 互联网金融中的是一种机器学习的过程 互联网金融中风和机器学习一样要定义Y目标和X变量。 Y目标和普通机器学习Y目标的区别就在于正负比例非常悬殊。...应用于规则、反欺诈服务和实时欺诈监控。数据在采集、传输、存储时能达到99.999%的可靠性。基于实时数据采集平台和图数据库,可实时捕捉风险特征,控制欺诈风险。...FinGraph是线上风险统中关键的一环 ? 总结:数据科学在互联网金融中发扬 图挖掘技术可以把风工作,从局部考量提升到全局考量。

    2.7K50

    金融科技|建模技术方案

    建模的技术方案 1 逻辑回归模型 在银行的传统评分卡建模中,应用的也是逻辑回归模型。逻辑回归本质上是一个线性分类模型。...一方面,深度学习模型都有很高的模型复杂度,需要大规模的样本数据,而领域要获取大规模的样本数据的成本极高。...另一方面,如前所述特征数据的维度间是平行的,不存在邻近关系,较难利用CNN和RNN这样具有较好物理含义的深度学习模型,而简单的堆砌若干个全连接层在高维特征数据上是很难得到一个稳定的模型。...总之,金融模型是一个既传统又新鲜的技术问题。银行的模型已经随着银行业的发展应用了数十年。...而互联网金融面临的如何组合大量的弱特征数据对于用户的逾期行为给一个准确的预测,是一个新出现的技术课题,技术方案也在快速的迭代演进中。

    1.7K30

    金融科技&大数据产品推荐:金鹏汽车金融数据系统

    金鹏汽车金融数据系统主要基于大数据科技、决策树规则引擎、深度学习等多项核心技术,有效针对新车贷款、二手车贷款等业务,提高风效率。...的产品投递 1、产品名称 金鹏汽车金融数据系统 2、所属分类 消费金融 金融科技·、征信、反欺诈、智能定价 3、产品介绍 金鹏汽车金融数据系统一站式完成车贷审批流程。...金鹏汽车金融系统一站式解决预审批难题,基于大数据科技、决策树规则引擎、深度学习等多项核心技术,提高车贷行业能力,给予更准确、更效率、更便捷的体验。...集团首创集数据、内容、用户、时间、情感于一体的国内领先的五维大数据智能平台,构造了独特的金融数据智能处理和应用平台,围绕金融数据的手机、整理、分析、管理和综合利用,为金融行业大数据应用提供完整的产品和服务方案...整体应用方案包含大数据平台建设大数据分析及处理、金融数据生命周期管理、互联网智能营销、互联网商情及声誉风险管、舆论传播及引导等方向。

    2.1K70

    2017年数据报告

    金融科技下的批量化获客、作业有效降低了成本。二是通过大数据、云计算等手段,在风险防范、风险管方面实现了线上化和批量化。 其中,大数据技术解决了消费金融乃至小微金融领域的效率瓶颈。...目前,有能力推动大数据的主要为国有大行、股份制银行等大型银行,以及部分城商行等。互联网巨头、三运营商等由于掌握了庞大的个人数据,也开始加入到这一市场中来。...根据媒体报道,监管当局已决定由互金协会牵头成立个人信用信息平台,于今年底正式批筹,坊间将之称为“信联”。 风险识别与控制既是金融业运营的核心,也是大数据在国内外金融领域最主要的应用部分。...从国内金融机构应用大数据的情况看,主要将大数据应用在客户画像领域,包括风险管、运营优化、业务创新、优化营销策略等。...“白名单”主动预授信 在消费金融中,银行、互联网金融等机构开始采用前置的白名单邀请制,商业银行将主动授信用于实际业务,这是对以往被动授信模式的颠覆。

    1.9K00

    金融科技&大数据产品推荐: 数美金融—构建立体的全业务流程体系

    的产品投递 1、产品名称 数美全业务流程体系 2、所属分类 金融科技 · 、反欺诈 3、产品介绍 数美依托强大的AI技术与海量基础数据,为金融机构提供覆盖全业务流程的完整风解决方案。...信贷云也提供了一个可视化的规则引擎,该规则引擎集成数美所有的数据,并支持客户自定义的数据。客户可以利用这些数据,在web控制台灵活地配置各种规则策略。...可信度和所有的风险判断结果都会反馈给客户的专家团队。 信贷云集成了数美所有的数据维度,并且支持客户自定义数据,将自定义数据与数美数据联合使用。...这让金融企业面临着来自市场与黑灰产的双重挑战,并因此催生了对新金融的需求。 数美将企业沉淀数据与自身数据库相结合,一站式的帮助企业解决欺诈问题。...2) 助力金融企业服务,促进普惠金融发展 数美一直专注于大数据反欺诈领域的技术创新,通过多种反欺诈技术识别欺诈风险,借助多维度数据识别信用风险,利用多重的策略模型提升效果,进而打造立体的防御体系,为金融客户提供持续

    2.6K30

    蚂蚁金服总监王黎强:智能助力新金融

    数据猿报道,2017年10月25日,由 数据猿 联合《清华金融评论》共同主办的“2017金融科技价值峰会——数据驱动金融商业裂变”在北京隆重召开。...本文为数据猿现场直播“蚂蚁金服总监王黎强:智能助力新金融”的发言实录。...但是事实上这个体系还不够完善,因为不仅仅是一个冷冰冰的数据和机器,更多的还要看到客户体验。我们既要做到保障整个安全,还要兼顾到用户的体验。...因为我们所有的交易是在线上发生的,与传统金融机构的区别在于,我们所有的风险也都是暴露在线上的。通过多年的努力,我们构建了一套全方位立体化智能的体系,这里我可以分享几个数据: 第一个数据是一百毫秒。...举个例子,我们整个体系就像人的骨骼,数据是人的血肉,AI是人的大脑,三者有机结合在一起,构成了我们整个智能体系的框架。然后高效实时的运作起来,是蚂蚁金服智能体系的第一个优势。

    2.7K61

    金融评分卡建模全流程!

    一、评分卡的分类 在金融领域,无人不晓的应该是评分卡(scorecard), 无论信用卡还是贷款,都有”前中后“三个阶段。...我们最熟悉的,莫过于支付宝的芝麻信用分,又或者知乎盐值(虽然知乎盐值不是评估金融风险的,但也算是评分卡的应用之一) 但是,随着信贷业务规模不断扩大,对工作准确率的要求也逐渐提升。...一般包含下面六个步骤 数据探究。研究数据都包含哪些信息。 样本选取。选取一定时间周期内该平台上的信贷样本数据,划分训练集和测试集。 变量选取。也就是特征筛选。需要一定的业务理解。...我们用的数据是每个搞的人都熟悉的“Give Me Some Credit"数据集。本节会按照列出的六个步骤带你领略评分卡实际构建过程。 数据集地址:https://link.zhihu.com/?...4.2 样本选取 对于金融机构内部,我们需要将连续的数据分为训练集和测试集。

    9.2K61

    【应用】揭秘互联网金融的大数据

    数据能够进行数据变现的商业模式目前就是两个,一个是精准营销,典型的场景是商品推荐和精准广告投放,另外一个是大数据,典型的场景是互联网金融的大数据。...金融的本质是风险管理,是所有金融业务的核心。典型的金融借贷业务例如抵押贷款、消费贷款、P2P、供应链金融、以及票据融资都需要数据识别欺诈用户及评估用户信用等级。...其他同信用相关的数据还有区域、产品、理财方式、行业、缴款方式、缴款记录、金额、时间、频率等 互联网金融的大数据并不是完全改变传统,实际是丰富传统数据纬度。...另外如果让外界知道了自家平台黑名单的数量,会影响其公司声誉,降低公司估值,并令投资者质疑其平台水平。...八、参考借款人社会属性和行为来评估信用 参考过去互联网金融的经验发现,拥有伴侣和子女的借款人,其贷款违约率较低;年龄的人比年龄低的人贷款违约率要高,其中50岁左右的贷款人违约率最高,30岁左右的人违约率最低

    1.4K40

    供应链金融及产业

    在政府发布的相关政策中,不少都提及了供应链金融。2月19日,工信部发布了关于运用新一代信息技术来支撑服务和疫情防的通知,其中第11条就写到了要运用基于生产数据的供应链金融来保障企业的复产复工。...很明显核心企业的平台在此类场景的配合、资产的把和风的能力上具有一定的优势。 往深处讲,再一个就是金融机构。金融机构有更多的供给层面的资金,可以形成快速有效低成本的供给,甚至还具有一定的能力。...金融机构的不足之处则是,他无法脱离开核心企业的配合以及核心企业的平台数据金融机构和核心企业是相辅相成的。...第三是金融科技平台金融科技平台的最大优势在于线上化的操作和大数据的集成,以及基于数据进行的信息化的处理。另外仓储企业的话呢,因为它适用于特定场景,所以可能用到的机会不是很多。...---- 在后续课程中我们会继续为大家介绍 腾讯云对供应链金融科技解决方案、产业的相关内容 感兴趣的小伙伴可以点击“阅读原文”观看完整视频噢!

    2.1K20

    供应链金融及产业

    在政府发布的相关政策中,不少都提及了供应链金融。2月19日,工信部发布了关于运用新一代信息技术来支撑服务和疫情防的通知,其中第11条就写到了要运用基于生产数据的供应链金融来保障企业的复产复工。...这只是一个基础的模式,在产业链金融的逻辑下,它的模式可以更加的丰富多样,比如说金融机构可以通过产业数据的方式来校验客户数据的真实性。...很明显核心企业的平台在此类场景的配合、资产的把和风的能力上具有一定的优势。 往深处讲,再一个就是金融机构。金融机构有更多的供给层面的资金,可以形成快速有效低成本的供给,甚至还具有一定的能力。...金融机构的不足之处则是,他无法脱离开核心企业的配合以及核心企业的平台数据金融机构和核心企业是相辅相成的。...第三是金融科技平台金融科技平台的最大优势在于线上化的操作和大数据的集成,以及基于数据进行的信息化的处理。另外仓储企业的话呢,因为它适用于特定场景,所以可能用到的机会不是很多。

    5.8K01

    金融科技|普惠金融下的智能信贷

    可以说,利用大数据、人工智能等建设智能能力,已成为互联网金融时代银行提升核心竞争力的重要举措。...在当前时代背景下,普惠金融下的信贷呈现如下几个发展趋势: (一)线上化 通过互联网信息技术可以从线上方便、快捷地获取客户海量数据信息,并且通过智能模型可以自动快速处理客户海量数据。...(五)建设人才队伍,完善体系 人才队伍是建设智能体系的核心力量,同时也是金融机构的核心竞争力。...从长远来看,智能已不再仅仅是数据、模型和系统三者的配合形成的智能,它需要更多地与普惠金融的业务创新和管理模式变革配合起来。...只有将智能放在商业银行普惠金融经营发展的大环境中,才能真正处理好普惠金融中传统和智能的关系,综合评估和运用两者的优势,以一种更加平稳、循序渐进的方式推动智能化的平稳转型。

    2.7K10

    数据挖掘实践(金融):金融之贷款违约预测挑战赛(上篇)xgbootslightgbmCatboost等模型--模型融合:stacking、blend

    数据挖掘实践(金融):金融之贷款违约预测挑战赛(上篇)xgboots/lightgbm/Catboost等模型--模型融合:stacking、blending 1.赛题简介 赛题以金融中的个人信贷为背景...通过这道赛题来引导大家了解金融中的一些业务背景,解决实际问题,帮助竞赛新人进行自我练习、自我提高。...赛题以预测金融风险为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。...评分卡是金融中常用的一种对于用户信用进行刻画的手段哦!...项目链接以及码源 数据挖掘专栏 数据挖掘实践(金融):金融之贷款违约预测挑战赛(上篇) 数据挖掘实践(金融):金融之贷款违约预测挑战赛(下篇)

    5.2K110

    数据挖掘实践(金融):金融之贷款违约预测挑战赛(下篇)xgbootslightgbmCatboost等模型--模型融合:stacking、blend

    数据挖掘实践(金融):金融之贷款违约预测挑战赛(下篇)xgboots/lightgbm/Catboost等模型--模型融合:stacking、blending 相关文章: 数据挖掘实践(金融...):金融之贷款违约预测挑战赛(上篇) 数据挖掘机器学习专栏 4.建模与调参 项目链接以及码源见文末 4.1 模型对比与性能评估 4.1.1 逻辑回归 优点 训练速度较快,分类的时候,计算量仅仅只和特征的数目相关...928000128.00 MB Memory usage after optimization is: 165006456.00 MB Decreased by 82.2% 4.2.1 简单建模 Tips1:金融的实际项目多涉及到信用评分...为了防止过拟合,将数据分为两部分d1、d2,使用d1的数据作为训练集,d2数据作为测试集。预测得到的数据作为新特征使用d2的数据作为训练集结合新特征,预测测试集结果。...数据挖掘实践(金融):金融之贷款违约预测挑战赛(上篇) 数据挖掘实践(金融):金融之贷款违约预测挑战赛(下篇)

    4K51

    咖实战分享 | 金融行业的联邦建模案例分享

    FATE是全球首个工业级的联邦学习开源框架,旨在从技术维度出发,在数据间彼此孤立、同时被不同组织所拥有且并不能被轻易地聚合在一起的环境下,联合构建机器学习模型。...对此,FATE开源社区继“月度之星”、“经典问答”等活动后,又特别推出了“咖实战分享”活动,以帮助大家解决FATE实际应用问题。...7月15日晚7点,我们邀请到京东科技的闫玉成老师,为我们分享金融行业的联邦建模案例。...分享嘉宾 京东科技 闫玉成 算法工程师,从事及联邦学习领域的研究和实践 参与方式 【入群看直播】欢迎加入FATE联邦学习官方交流群,本群主要为联邦学习爱好者、相关专业人士提供交流平台,可与专家互动

    64810

    金融的护航员——聊聊ERNIE在度小满用户的应用

    这意味着金融行业的需求异常迫切。面对更加下沉的客户群体、更加复杂的用户信息,既需要保证业务安全合规,也需要把尺度和客户体验之间的平衡。 那么现在的金融机构是如何做这些的呢?...传统金融机构里会请金融师、审核员等对借贷资质进行人工审核,但该工作对相关从业人员的要求极高,既要有相关的背景知识能够对客户的资信状况做全面了解,又要求严谨认真,有独立的判断能力。...同时,随着互联网金融的发展,每天在平台上发上的借贷行为数以万计,对于人力的消耗非常巨大,审核标准的统一性、效率都难以保证。...另外,传统的建模技术是基于小样本的监督学习,依赖于特征挖掘,需要耗费大量人力且依赖个人经验。同时,对于小样本的文本类数据处理往往缺乏对上下文的理解,无法提取其重点,导致对用户的理解出现偏差。...利用ERNIE模型的长文本建模能力和预训练语义知识,结合小规模用户行为文本和用户标签的标注数据进行ERNIE精细Fine-tune,在训练2轮左右的时间内即可完成用户模型的收敛,而传统模型动辄需要训练

    1.9K10

    金融遇上人工智能,众安金融的实时特征平台实践

    数据要素价值的挖掘可谓分秒必争,业务也对数据的时效性和灵活性提出了更高的要求。在庞大分散、高并发的数据来源背景下,数据的实时处理能力成为企业提升竞争力的一因素。今天分享的是众安金融实时特征平台实践。...我们搭建了以大数据为基础、以规则与模型为策略,以系统平台为工具的大数据体系。通过利用大数据与个人信用的关联挖掘出大量的用户风险特征和风险模型,从而提升的预测能力。...,一开始特征平台的初衷是为体系服务,随着业务的发展,模型也逐渐使用到了用户营销场景和一些资源位的用户推荐服务中。...这里值得注意的是,对业务了解的同学就会知道,一次策略会有多个规则,每个规则会查询多个特征数据,所以一次业务交易对于实时特征平台来说可能就会放大到几百倍的调用。...在业务场景,特征维度基本上基于人维度的,比如用户身份证、手机号,还有用户这个组件的维度,比较少见基于这种优惠券 ID 维度的特征。Q11:有深度网络方面的特征提取吗?

    65600
    领券