http://blog.csdn.net/qtlyx/article/details/53647159 1.pandas的一个技巧 apply() 和applymap()是DataFrame数据类型的函数...,map()是Series数据类型的函数。...apply()的操作对象DataFrame的一列或者一行数据, applymap()是element-wise的,作用于每个DataFrame的每个数据。...map()也是element-wise的,对Series中的每个数据调用一次函数。...2.PCA分解德国DAX30指数 DAX30指数有三十个股票,听起来不多的样子,其实还是挺多的,我们很有必要对其进行主成分分析,然后找出最重要的几个股票。
1.pandas的一个技巧 apply() 和applymap()是DataFrame数据类型的函数,map()是Series数据类型的函数。...apply()的操作对象DataFrame的一列或者一行数据, applymap()是element-wise的,作用于每个DataFrame的每个数据。...map()也是element-wise的,对Series中的每个数据调用一次函数。...2.PCA分解德国DAX30指数 DAX30指数有三十个股票,听起来不多的样子,其实还是挺多的,我们很有必要对其进行主成分分析,然后找出最重要的几个股票。...')['Close'] data = data.dropna()#丢弃缺失数据 dax = pd.DataFrame(data.pop('^GDAXI'))#将指数数据单独拿出来,采用pop在获取的时候已经从原来的地方删除了这一列数据了
1.pandas的线性回归 回归分析是金融中一个绕不过的话题,其实最好的工具应该是R语言,但是pandas其实也是能够胜任绝大部分工作的。 ...这里,pandas的回归给出了上图的分析。决策系数是0.7621,调整后的是0.7597,不过笔者这里有一个疑问,一元线性回归的调整系数有意义吗? ...当然,如果我们用的是真实世界的数据,恐怕就不会那么好了吧。
下载数据集请登录爱数科(www.idatascience.cn) 数据集从零售投资者的角度包含了金融新闻头条的观点。数据集包含两列,情感标签和新闻标题,情感标签包含消极的,中立的或积极的。 1....数据预览 3. 字段诊断信息 4. 数据来源 来源于Kaggle。 5. 数据引用 Malo P, Sinha A, Korhonen P, et al.
qr-code.png 雅虎财经 利用Pandas模块直接获取雅虎财经数据,方便之极。...网站提供了csv格式数据下载服务。...利用DataReader抓取数据 # 定义获取数据的时间段 start = datetime.datetime(2010, 1, 1) end = datetime.datetime(2016,5,20...数据读取和输出pd.read_csv and to_csv 从文件读取数据是非常常见的操作 sh.to_csv('sh.csv',header=None) names = ['Date','Open'...当然注意这里数据有缺失,有的日期没有记录。
pd.DataFrame(raw_data_1) data2 = pd.DataFrame(raw_data_2) data3 = pd.DataFrame(raw_data_3) 将Data1和data2两个数据框按照行的维度来进行合并...all_data = pd.concat([data1,data2]) print(all_data) 将data1和data2两个数据框按照列的维度进行合并 all_data_col = pd.concat
CDAS 2017中国数据分析师行业峰会下午的大数据与金融分论坛中,来自IBM、诸葛io、民生银行等六位专家与教授,分享了大数据在金融领域的实践和应用 人工智能助力银行审计管理 IBM Analytics...深入金融场景的数据驱动与应用 诸葛io产品VP于晓松 金融行业对用户的分析停留在人口属性方面,比如性别、工资结构、偿还能力等等,而缺乏用户行为方面的画像。...用R语言实现量化交易策略 《R的极客理想》系列图书作者、民生银行金融大数据分析师张丹 中国的金融二级投资交易市场,是一个不成熟的市场,同时又是情绪化的市场。...“双创”大数据金融分析服务 北京赛智时代信息技术咨询有限公司CEO赵刚 目前我国创新创业形式喜人,给许多企业带来了机会。...赵刚先生在峰会现场讲解了Innov100的数据分析服务方法、数据雷达、数据洞察等内容,针对创新创业的中小微企业的数据分析有助于金融机构找准创业赛道,选好投资方向,评价投资价值,发现潜力项目,洞察关键成功因素
Python的功能不可以说不大,在金融数据分析里面有着很方便的应用。...1.数据获取 pandas包中有自带的数据获取接口,详细的大家可以去其官网上找,是io.data下的DataReader方法。...dataframe的数据结构 print DAX.info() #绘制收盘价的曲线 DAX['Close'].plot(figsize=(8,5)) 我们获得的数据是dataframe的结构,毕竟是...这个是我们获取的数据的信息。 ? 绘制出来的收盘价曲线是这样的。...和FRM中提到的一样,在市场低迷,或者说,金融危机的时候,市场的波动率急剧增加。于是,就有了恐慌指数这个东西,也就是Vix,其实就是市场的波动率指数。
这个数据明显错误,创建函数处理该问题 def fix_century(x): year = x.year - 100 if x.year > 1989 else x.year return...Yr_Mo_Dy') print(data.head(5)) 对应每一个location 一共有多少个缺失值 print(data.isnull().sum()) 对应每一个location ,一共由多少完整的数据值...shape[0]获取行数,shape[1]获取列数 print(data.shape[1]-data.isnull().sum()) 对于全体数据,计算风速的平均值 print(data.mean...().mean()) 创建一个名为loc_stats的数据框去计算并存储每一个location的最小值、最大值、平均值、标准差。...date.day) january_winds = data.query('month == 1') print(january_winds.loc[:,'RPT':'MAL'].mean())` 对于数据记录安年频率取样
平台金融模式中,是平台企业对其长期以来积累的大数据通过互联网、云计算等信息化方式对其数据进行专业化的挖掘和分析,通过研究并与传统金融服务相结合,创新性的为平台服务企业开展相关资金融通工作。...平台模式的特点在于企业以交易数据为基础对客户的资金状况进行分析,贷款客户多为个人以及难以从银行得到贷款支持的小微企业,贷款无需抵押和担保,能够快速发放贷款,且多为短期贷款。...同时,这也使平台模式具有了寡头经济的特点,平台模式中的企业必须在前期进行长时间交易数据的积累,在交易数据的积累过程中完善交易设备和电子设备,以及进行数据分析所需的基础设施积累和人才积累。...说到大数据,首当其冲的应该是已经围绕数据海洋中耕耘已久并衍生出金融借贷业务的阿里系。首先从宏观上对阿里系进行分析。阿里系的基础是“三流”:信息流、资金流以及目前马云退休后布局的物流。...笔者认为,无论采用上述哪种运营模式,大数据分析的能力和数据来源的合法性、持续性能力对于企业来说必不可少。企业应根据自身发展特点选择自身适合的模式。 摘自:搜狐证券
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~今天给大家介绍一个金融数据分析库yfinance,主要是基于该库下的股票数据分析及股价预测(使用LSTM模型)yfinance库yfinance...是一个用于从 Yahoo Finance 获取金融数据的 Python 库。...它提供了一个方便的接口,让用户能够轻松地下载和处理股票、指数、货币对等金融市场的历史价格数据和其他相关信息。yfinance 让开发者和分析师能够使用 Python 进行金融数据分析、可视化和研究。...数据处理和分析: 通过将数据转换为 pandas 数据框,用户可以方便地进行数据处理、计算技术指标和执行分析操作。全球市场: yfinance 不仅仅支持美国市场,还能够获取许多全球市场的金融数据。...这可以帮助分析者理解数据的波动情况,尤其是在金融分析等领域。
大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。...在大数据和大数据分析,他们对企业的影响有一个兴趣高涨。大数据分析是研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。...该项目将会创建出开源版本的谷歌Dremel Hadoop工具(谷歌使用该工具来为Hadoop数据分析工具的互联网应用提速)。...“Drill”项目其实也是从谷歌的Dremel项目中获得灵感:该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等...BI 平台包含组件和报表,用以分析这些流程的性能。目前,Pentaho的主要组成元素包括报表生成、分析、数据挖掘和工作流管理等等。
小安前言 随着网络安全信息数据大规模的增长,应用数据分析技术进行网络安全分析成为业界研究热点,小安在这次小讲堂中带大家用Python工具对风险数据作简单分析,主要是分析蜜罐日志数据,来看看一般大家都使用代理...数据分析工具介绍 工欲善其事,必先利其器,在此小安向大家介绍一些Python数据分析的“神兵利器“。...Python中著名的数据分析库Panda Pandas库是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建,也是围绕着 Series 和 DataFrame 两个核心数据结构展开的,其中Series...我们有了这些“神兵利器“在手,下面小安将带大家用Python这些工具对蜜罐代理数据作一个走马观花式的分析介绍。 1 引入工具–加载数据分析包 启动IPython notebook,加载运行环境: ?...当然了用Pandas提供的IO工具你也可以将大文件分块读取,再此小安测试了一下性能,完整加载约21530000万条数据也大概只需要90秒左右,性能还是相当不错。
import pandas as pd import numpy as np 获取数据集 url = 'https://raw.githubusercontent.com/justmarkham.../DAT8/master/data/chipotle.tsv' 导入数据集至chipo chipo = pd.read_csv(url,sep = '\t') 设置打印宽度 pd.set_option...('display.width',1000) 查看前10行数据 print(chipo.head(10)) 了解数据集中有多少个观察值 print(chipo.info()) 了解数据集中有多少列...print(chipo.shape[1]) 打印出全部列的名称 print(chipo.columns) 输出数据集的索引 print(chipo.index) 被下单数最多的商品(...float(x[1:-1]) chipo.item_price = chipo.item_price.apply(dollarizer) print(chipo.item_price) 在该数据集对应的时期内
的产品投递 1、产品名称 Stratifyd大数据分析平台 2、所属分类 金融科技·智能获客 3、产品介绍 Stratifyd大数据分析平台是Stratifyd大数据团队设计和研发的快速分析响应解决方案...4、应用场景/人群 在金融行业,产品的应用包括企业决策者、市场人员、运营人员、产品人客服人员、数据分析师等。...提炼和智能分析,大量减少数据分析组逐一整理数据的时间,将更多时间用在驱动决策上。 银行需要快速定位客户对金融产品和服务集中咨询的领域如货币市场,储蓄卡,账单支付,电汇转账等。...Stratifyd协助金融企业利用客户交易数据来分析其消费习惯和爱好,定位其金融需求,了解各个企业的运营情况、现金流情况、主要的资金流向等信息。...Stratifyd协助金融企业了解客户对产品的意见、建议并形成多维度的数据分析供金融企业进行改进。
,') 只显示Goals这一列 print(euro12["Goals"]) print(euro12.Goals) 有多少至球队参与了2012欧洲杯 print(euro12.shape[0]) 该数据集一共有多少列...print(euro12.info()) 将数据集中的列Team,Yellow Cards和Red Cards单独存为一个名叫discipline的数据框 discipline = euro12[["...Team","Yellow Cards","Red Cards"]] print(discipline) 对数据框discipline按照先Red Cards再Yellow Cards排序 print...discipline['Yellow Cards'].mean()) 对平均值取整 print(round(discipline['Yellow Cards'].mean())) 找到进球数Goals超过6的球队数据...print(euro12[euro12.Goals>6]) 选取以字母G开头的球队数据 print(euro12[euro12.Team.str.startswith("G")]) 选取前7列 print
1.话题引入 我们在线性回归做假设检验,在时间序列分析做自回归检验,那么我们如何检验一个分布是否是正态分布的呢? 首先,我们定义一个用来生成价格路径的函数。...当然这是我们仿真出来的路径,那么如果我们真的获取了这样的价格数据,我们要知道他是不是服从正态分布我们该怎么办呢?比较在金融理论里面,正态分布有着很大的优越性。...2.正态性检验 我们知道,其实价格服从的是lognormal分布,而每天的收益率是服从正态分布呢,所以,首先我们根据上面的仿真数据来获得每天的收益率数据。...所以,写个函数来分析: def normality_test(arr): print "Skew of dataset %14.3f" % scs.skew(arr) print "Skew
貌似三个月没有更新博客园了,当时承诺的第二篇金融数据分析与挖掘这几天刚好又做了总结,在国内经济不景气的现在来对这个话题结个尾。...1、(量化)投资的方法基础分析 1.1 投资的两种方法 技术分析 技术分析是指研究过去金融市场的资讯(主要是经由使用图表)来预测价格的趋势与决定投资的策略。...很多个人投资者也比较多技术分析,但缺乏丰富的经验等 基本面分析 基本面分析又称基本分析,是以证券的内在为依据,着重于对影响证券价格及其走势的各项因素的分析,宏观数据、市场行为、企业财务数据...、交易数据等进行分析,以此决定投资购买何种证券及何时购买。...指数平滑异同移动平均线(Moving Average Convergence /Divergence, MACD)是股票交易中一种常见的技术分析工具,由Gerald Appel于1970年代提出,用于研判股票价格变化的强度
,各界也出现了许多好用的功能种类丰富的数据分析工具。...下方是数据分析常用R库: 方向 R库 数据处理 lubridata,dplyr,ply,reshape2,string,formatR,mcmc 统计 方差分析 aov anova 密度分析 density...www.bilibili.com/video/BV1uL411s7bt B站视频教程:https://www.bilibili.com/video/BV1Jg411F7cS Microsoft Excel是数据分析中使用最广泛的工具之一...六、Apache Spark 官网:https://spark.apache.org/ 最大的大型数据处理引擎之一,该工具在Hadoop集群中执行应用程序的内存速度快100倍,磁盘速度快10倍,该工具在数据管道和机器学习模型开发中也很流行...七、SAS 官网:https://www.sas.com/zh_cn/home.html SAS是用于数据处理和分析的编程语言和环境,该工具易于访问,并且可以分析来自不同来源的数据。
数据分析的本质是为了解决问题,以逻辑梳理为主,分析人员会将大部分精力集中在问题拆解、思路透视上面,技术上的消耗总希望越少越好,而且分析的过程往往存在比较频繁的沟通交互,几乎没有时间百度技术细节。...因此,熟练常用技术是良好分析的保障和基础。 笔者认为熟练记忆数据分析各个环节的一到两个技术点,不仅能提高分析效率,而且将精力从技术中释放出来,更快捷高效的完成逻辑与沟通部分。...本文基于数据分析的基本流程,整理了SQL、pandas、pyspark、EXCEL(本文暂不涉及数据建模、分类模拟等算法思路)在分析流程中的组合应用,希望对大家有所助益。...2、分批读取数据: 遇到数据量较大时,我们往往需要分批读取数据,等第一批数据处理完了,再读入下一批数据,python也提供了对应的方法,思路是可行的,但是使用过程中会遇到一些意想不到的问题,例如:数据多批导入过程中...如上即为数据的导入导出方法,笔者在分析过程中,将常用的一些方法整理出来,可能不是最全的,但却是高频使用的,如果有新的方法思路,欢迎大家沟通。
领取专属 10元无门槛券
手把手带您无忧上云