在很多人入门数据分析师或者投身大数据行业的时候,必然会听到的两个词就是“报表工具”和“BI商业智能”。然而很多人并不明白两者的概念和区别,以为报表就是BI,BI就是报表。
其实这是相当错误的理解,但有这种错误观念也不怪大家,因为这两者都是大数据时代下的数据工具,两者的功能确实也有所重合,但两者在本质上还是存在较大差异。
BI工具和报表工具都是现在大数据时代下用得比较多的分析工具。很多人分不清BI工具和报表工具到底有什么不同,下面,我们就从面向群体、技术架构、用途和作用效果等四个方面,详细说下它们之间有何不同。
续上一篇《数据分析对企业有啥用》之后,我们继续来讨论一个深层次的话题:数据分析师的工作绩效到底该怎么定。这个又是一个很蛋疼的话题,甚至很多从业很久的老鸟都没想明白,也很容易中坑。
随着市场环境的复杂化,在数据分析中,能否提供更具商业洞察力的数据信息正在成为考核业务员能力的重要参考指标。加强以下两大块能力至关重要:
以前我在某外企银行实习的时候,需要处理将近七年的财务报表,如果按照传统的方式,我估计七天七夜都处理不完,就更别提分析了。一般来说外企的电脑软件限制非常严格,有专门的IT把控。很多软件是下不了的,即使是python这样的开源工具也不行,下载软件都需要找IT审批。
现代企业信息化程度越来越高,ERP、生产制造、财务营销等管理系统,各类数据报表、分析报告随处可见。大多企业在报表分析当中,还没有区分管理层级需求,将所有能够看到的数字以报表形式上报,没有体系,只有混乱的结果,这样的数据分析就仅仅是汇总和上报。
又是一年年底,企业都在制定2021年工作计划。一提数据分析的工作计划,很多同学纠结的直挠头。到底数据分析工作计划该咋写?今天我们系统讲解一下。
有同学问:经常听到“搭建运营分析体系、搭建业绩监控体系、搭建商品分析体系”等等要求。可到底数据分析体系是什么?似乎经常看到的,只有AARRR五个字母,又语焉不详。到底怎样才算是建了个体系?今天我们系统解答一下。搭建数据分析体系,是从初级数据分析向高级发展的必备一环。留心看哦。
分享一下自己工作5年后,成功拿到京东offer,从传统行业转到数据分析的经历,希望能对同学们有所帮助。
12月,又到了一年一度的年终总结+述职报告环节。有很多同学表示:有没有模板可以抄抄,今天它来了。考虑到每位同学做述职的性情不太一样,有的想出人头地,有的只想交差了事,有的早就对公司不满恨不得马上离职。因此,我们今天会给几个个性化版本,大家参照自己的需求来写。
年中时候,老板想看下上半年的销售报表数据,希望看到公司销售状况指标和其变动趋势的信息,以期了解产品、地域、行业发展情况,并为下半年的运营发展提供决策依据,衡量成本和广告投放渠道价值。
近日,腾讯云 ChatBI 启动公测,它能通过自然语言对话方式生成图表和数据结论,有效解决原先 BI 领域数据分析门槛高、临时报表制作效率低、实时取数难等用户痛点。
又到了一年一度的年终总结+述职报告环节。有很多同学表示:有没有模板可以抄抄,今天它来了。
报表,从来都是商业领域的主角,而随着商业智能(BI),大数据时代的到来,报表更加成为了业务系统的核心组成。因此传统的格式已经无法满足新的需求,最终用户期望在一张报表中看到更多的汇总、分类信息,而往往这些汇总和分类信息是不固定的,比如下面这张报表
🍉🍉🍉 正所谓商场如战场,有多少人被电视剧蒙蔽了双眼。平日里我们以为商战就是运筹帷幄,决胜千里之外。想象中的商战,是在宴会上推杯换盏,老板们弹指间几个亿上下。
从研发、生产,再到运营、销售,制造企业所涉及的经营管理内容十分广泛。在过去的几年中,制造业的数字化转型快速发展,逐渐实现了全链路的数字化。
零跑汽车自成立以来,始终坚持核心技术的自主研发,成功自研智能动力、智能网联、智能驾驶三大核心技术,是拥有智能电动汽车完整自主研发能力以及掌握核心技术的整车厂家。
又到了一年一度的年终总结+述职报告环节。有很多同学表示:有没有现成的模板可以抄抄,今天它真的来了。 考虑到每位同学做述职的性情不太一样,有的想出人头地,有的只想交差了事,有的早就对公司不满恨不得马上离职。因此,我们今天会给几个个性化版本,大家参照自己的需求来写。 01 版本一:负分滚粗型 使用场景:想被领导骂的时候。 范文: 我一年都好忙啊,都在写代码,写的啥我也不知道。 写作要点:很多做数据分析的同学,其实没有什么项目经验,也没有正儿八经建模,每天都在做人肉sql机,跑一堆数。这时候会觉得似乎天天在忙,却
初入大数据行业,大家肯定会听到“BI”“报表”这俩词,“BI”出现的地方一般都会出现“报表”,以至于很多人直接认为他们是一个东西。其实不然,虽然BI的结果通常需要报表来呈现,但是“BI”和“报表”并不是一个东西。
本文为CDA金牌讲师李奇原创,转载请在本平台申请授权 随着大数据时代的到来,企业管理者对数据价值的重视度越来越高,他们渴望从企业内外部数据中获得更多的信息财富,并以此为依据,帮助自己做出正确的战略决策。在此种大环境下,缺乏洞察力的传统业务报表已经开始无法满足复杂市场环境中的企业决策需求,在很多企业中,“能否基于业务分析提供更具商业洞察力的数据信息”正在逐步取代“能否准确、及时地提供业务报表”成为考核业务人员能力的重要参考指标。为了能够提供更具洞察力的信息,需要业务人员强化以下两类能力: 强化所从事业务工作中
下文为电子表格大会主席李奇在论坛上的分享。 一般我都先讲Power BI,今天被前面老师讲了,我想了半天,该讲什么好呢,最后决定给大家先讲一个我自身的故事,跟大家分享一下我是如何接触到Power BI以及Excel商业智能的吧。 很多人都问我专业不对口能否做数据分析,其实我想跟大家说,我是学考古的,所以大家只要想干一切皆有可能。 2011年以前我都在日本,在日本待了11年,在日本做过程序员,也做过开发工程师,也给日本那边失业的人进行Excel培训。2011年回国之后,我到了IBM,做销售运营管理数据分析。做
做报表、分析数据、做汇报是许多打工人的日常,每天都要耗费不少的时间用Excel来整理、清洗数据和生成好看的报表。如果这些数据都是手动整理、复制粘贴的话,不仅费时费力,而且很容易出错。
从生产制造,到供应仓储,再到运营销售,一家成功的制造企业需要严格把关各个环节,其管理要求也高于其他类型的企业。如何解决这一问题,形成可落地的解决方案,通过数据进行制造企业的科学化全管理,提升效率,是下一步的发力点和落脚点。
“你有没有做过高级的数据分析?”这个问题一出,又问劈了很多同学。妈耶,平时都在跑取数单,啥是高级的数据分析见都没见过,咋回答。今天系统解答一下。
作者 Gam 本文为CDA数据分析师原创作品,转载需授权 数据分析老鸟都知道,相比于自己作出好的数据分析报告,“教别人如何入门数据分析”这事情简单多了。 什么for循环呀,def函数呀,print
做报表,是为了在业务中发挥作用的,不是给数据分析师自嗨的。而往往同学们做报表最头疼的问题,就是:辛苦做的报表没人看,需要数据时又跑来临时性取数,搞得人烦不胜烦。所以报表不在花里胡哨,业务部门想用、能用、有用就最好了。
2017年,我从河北工程大学植物保护专业毕业。由于专业对口的岗位当时比较少,我就在校招的时候选择了进入K12行业从事学科教育和英语类产品销售。
数据可视化:Data Visualization,即与视觉传达, 定义:为了清晰有效地传递信息,数据可视化使用统计图形、图表、信息图表和其他工具。可以使用点、线或条对数字数据进行编码,以便在视觉上传达定量信息。
张经理负责分析的饮料公司最近推出了一款新的果汁饮料,市场反响热烈,但也面临着激烈的竞争。公司高层希望了解,相比于竞品,这款新饮料在不同地区的销售表现如何,尤其是在北京、上海和广州这三个主要城市。更进一步,他们还想知道销售高峰主要集中在哪个时间段,以及特定促销活动和销量提升的关系。这些具体的业务需求,张经理需要从庞大的数据海中找到答案。
对于数据分析工作而言,如果没有目标,不仅工作结果可能没有意义,甚至有可能让人误入歧途。比如说,有的数据分析师,每天重复着制作报表的工作,没有对数据进行思考和分析,不知道数据分析的目标是什么,逐渐沦为「报表制作的机器」,让自己的职业前途堪忧。
辛辛苦苦跑的数据没人理,对数据分析师/专员来说是一件极具挫败感的事情。如果在日常更新数据的同时,还要接大量没头没尾的临时性需求,就更有挫败感了。如果发现接的临时性需求其实可以用日常数据替代,就更有挫败感了。“求求各位大爷看一眼报表好不好!”一股怨气油然而生。每天埋头跑数没人理,葬送数据新人职业发展的头号杀手。
在BI界广泛流传着一个观点,不懂商业别做数据分析,可见商业理解对于数据分析的重要性。然后现实中,数据分析切合业务往往四处碰钉子,那么如何解决这个业界难题呢?数据分析人往往是用经典案例套业务的需求,或者
到了这个特殊时期,你的老板就一定想要查看企业整体的运转情况、销售业绩、客户实况分析、客户活跃度、Top10 sales、 产品情况、订单处理情况等信息。
导读:对Linkedin商业数据分析部门而言,大数据分析不是什么高高在上、复杂枯燥的工作,而是一门化繁为简、高效实用的艺术。 在大数据时代,商业数据分析部门对一个公司的重要意义不言而喻。目前,很多公司的数据分析部门采用的都是“分析放在报表之上”的分析方法,即每天产出非常繁琐、复杂、海量、事无巨细的分析报告,但这些分析报告的可理解性和可执行性并不强。而Linkedin作为一个典型的数据驱动的公司,在进行数据分析时却反其道而行之,采用了“报表放在分析之上”的方法,化繁为简,以最快的速度在大数据金矿中发掘出最
根据战略顾问NewVantage在2021年对大数据和人工智能高管的调查,目前92%的组织正在继续增加对成为数据驱动型组织的投资,数据分析也给公司带来了更大的收益。麦肯锡全球研究所(McKinsey Global Institute)的结论是,通过数据分析,企业获得新客户的可能性高出23倍,留住现有客户的可能性高出六倍,使用数据洞察和分析时盈利的可能性高出19倍。
点击标题下「大数据文摘」可快捷关注 导读:对Linkedin商业数据分析部门而言,大数据分析不是什么高高在上、复杂枯燥的工作,而是一门化繁为简、高效实用的艺术。 在大数据时代,商业数据分析部门对一个公司的重要意义不言而喻。目前,很多公司的数据分析部门采用的都是“分析放在报表之上”的分析方法,即每天产出非常繁琐、复杂、海量、事无巨细的分析报告,但这些分析报告的可理解性和可执行性并不强。而Linkedin作为一个典型的数据驱动的公司,在进行数据分析时却反其道而行之,采用了“报表放在分析之上”的方法,化繁为简,
本项目案例由帆软投递并参与“数据猿年度金猿策划活动——2023大数据产业年度创新服务企业榜单/奖项”评选。
08年毕业,不知不觉的混进了电子商务行业,又不知不觉的做了三年数据分析,恰好又赶上了互联网电子商务行业发展最快的几年,也算是不错吧,毕竟感觉前途还是很光明的。三年来,可以说跟很多同事学到了不少东西,需
把你需要花大量时间和实践才能掌握的方法和知识,我加工后用通俗的语言分享给你,你就可以最短的时间掌握这些知识。
08年毕业,不知不觉的混进了电子商务行业,又不知不觉的做了三年数据分析,恰好又赶上了互联网电子商务行业发展最快的几年,也算是不错吧,毕竟感觉前途还是很光明的。三年来,可以说跟很多同事学到了不少东西,需要感谢的人很多,他们无私的教给了我很多东西。 就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利用数据分析来发现现有的不足,以作改进,让顾客有更好的购物体验;利用CRM系统来管理会员的生命周期,提高会员的忠诚度,避免会员
今日洞见 文章作者及图片来自ThoughtWorks:熊节。 本文所有内容,包括文字、图片和音视频资料,版权均属ThoughtWorks公司所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发布/发表。已经本网协议授权的媒体、网站,在使用时必须注明"内容来源:ThoughtWorks洞见",并指定原文链接,违者本网将依法追究责任。 大数据是当下最热门的IT主题之一。据麦肯锡的分析,大数据能使信息更透明、能让决策者获得更精确翔实的绩效信息、能针对客户群体提供更准确的定制、能提升组织
就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利用数据分析来发现现有的不足,以作改进,让顾客有更好的购物体验;利用CRM系统来管理会员的生命周期,提高会员的忠诚度,避免会员流失;利用会员的购买数据,挖掘会员的潜在需求,提供销售,扩大影响力等等。 最开始进公司的时候是在运营部,主要是负责运营报表的数据,当时的系统还很差,提取数据很困难,做报表也很难,都是东拼西凑一些数据,然后做成PPT,记得当时主要的数据就是销
在企业数据建设过程中,都离不开大数据平台建设,大数据平台建设涉及数据采集、数据存储、数据仓库构建、数据处理分析、数据挖掘机数据可视化等等一系列流程。
人效的数据分析是所有模块数据分析里最有价值也是最难的一部分,在年底的时候很多同学开始做人效的数据分析,但是不知道如何做分析,今天我们就通过一个案例给大家梳理下人效数据分析的思路。
领取专属 10元无门槛券
手把手带您无忧上云