所谓逆序性,其几何意义就是在规定了一个正方向之后(比如从1,2,3,4,5...N这个顺序定义为正号),交换任意一对数都取一次负号。...,矩阵的行列式对应的面积或者是体积.这样的推广证明相信在任意一本的线性代数书中都会看到,我只是说了人话而已.
5 行列式和矩阵的逆
我们知道很多定理,比如行列式为0的矩阵,不可逆,行列式不为0的矩阵...这个时候我们就应该要理解线性变化的几何意义.现在我来陈述一下:
如果我们把空间中一组线性无关的矢量都写成列向量的形式,那么他们所张成的N维体体积不为零,根据上面的分析,其值由行列式给出。...A的行列式如果不为零,则代表这个变换后,N维体的体积不是NULL。...为3*3的矩阵A,因为秩小于3,那么任何一个3维六面体经过他的变化后,体积变为0,退化一个面,但是仍然存在一个面积不为0的面,在变换以后还是一个非零面积的面
所以说所谓的一个线性变换的秩,无非就是变化后