“大面积、炫酷动效、丰富色彩”,大屏易在观感上给人留下震撼印象,便于营造某些独特氛围、打造仪式感。
小程序组件化开发框架 https://tencent.github.io/wepy/
在上一篇博客中提到了【数据可视化】数据可视化入门前的了解,这次来看看Echarts最常用图表有哪些,和作用是什么?
点阵图表 (Dot Matrix Chart) 以点为单位显示离散数据,每种颜色的点表示一个特定类别,并以矩阵形式组合在一起。
数据可视化的爱好者Severino Ribecca,他在自己的网站上收录了 60 种可视化图表样式以及它们分别适用于什么样的场景,并且推荐了相应的制作工具。
什么是数据可视化?数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息。为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集
Severino Ribecca 是一位平面设计师,也是数据可视化的爱好者,他在自己的网站上收录了 60 种可视化图表样式以及它们分别适用于什么样的场景,并且推荐了相应的制作工具。
摘要: 如今同质化的应用越来越多,应用开发者也开始在用户体验上下功夫,比如数据可视化,将一大堆密密麻麻的数字转成图表形式,可以更直观地向用户展示数据之间的联系和变化情况,减少用户的阅读和思考时间,以便很好地做出决策;目前互联网中有很多数据可视化工具,这里只选择了30个有特色好用的推荐给大家 如今同质化的应用越来越多,应用开发者也开始在用户体验上下功夫,比如数据可视化,将一大堆密密麻麻的数字转成图表形式,可以更直观地向用户展示数据之间的联系和变化情况,减少用户的阅读和思考时间,以便很好地做出决策;目前互联网中
众多周知,图形和图表要比文本更具表现力和说服力。图表是数据图形化的表示,通过形象的图表来展示数据,比如条形图,折线图,饼图等等。可视化图表可以帮助开发者更容易理解复杂的数据,提高生产的效率和 Web 应用和项目的可靠性。
所有网页图表均可在个人版WPS上使用,地图可视化、高级桑基图、和弦图、关系图等酷炫图表能够更多被WPS用户使用。
图例组件展现了不同系列的标记(symbol),颜色和名字。可以通过点击图例控制哪些系列不显示。
说到可视化,就不得不说一下大数据,毕竟可视化是解决大数据的一种高效的手段,而如今人人都在谈论大数据,大数据 ≠ 有数据 ≠ 数据量大, 离谱的是,如今就连卖早点的觉得自己能统计每天卖出的种类,都敢说自己是搞大数据。
新媒体管家 说到可视化,就不得不说一下大数据,毕竟可视化是解决大数据的一种高效的手段,而如今人人都在谈论大数据,大数据 ≠ 有数据 ≠ 数据量大, 离谱的是,如今就连卖早点的觉得自己能统计每天卖出的种类,都敢说自己是搞大数据。 时间推移到 2009 年,“大数据” 开始才成为互联网技术行业中的热门词汇。对“大数据”进行收集和分析的设想,起初来自于世界著名的管理咨询公司麦肯锡公司;麦肯锡公司看到了各种网络平台记录的个人海量信息具备潜在的商业价值,于是投入大量人力物力进行调研,在 2011 年 6 月发布
今天介绍下 Chrome dev tools 家族的一个小兄弟,它在 Chrome 57 之前叫作「Timeline」,而现在换了个更长的马甲 —— 「Performance」,毕竟名字要「长~~~~~~~~~」更能吸引注意。
文 | Piotr Kuzniewicz 译 | 高雨滴 校 | 郭瑽 辛辛苦苦分析一堆大数据,竟然没人看!如果你正着手于从数据中洞察出有用信息,那你所需要的正是——数据可视化。俗话说,有图有真相,
增加了一个【EasyShu图表宝典】功能,方便大家快速浏览EasyShu所有图表,也可以结合筛选功能,缩小范围去查看特定场景、兴趣、标签的图表,双击后可打开对应的图表示例文件进一步详细了解。
当前,数据可视化已经成为数据科学领域非常重要的一部分。不同网络系统中产生的数据,都需要经过适当的可视化处理,以便更好的呈现给用户读取和分析。 对任何一个组织来说,如果能够充分的获取数据、可视化数据和分析数据,那么就能很大程度上帮助了解数据产生的深层次原因,以便据此做出正确的决定。 对于前端开发人员来说,如果能够掌握交互式网页中的数据可视化技术,则是一项很棒的技能。当然,通过一些 JavaScript 的图表库也会使前端的数据可视化变得更加容易。使用这些库,开发者可以在无需考虑不同的语法所带来的编程难题的情况
英文: Anton Shaleynikov 译文:葡萄城控件 www.cnblogs.com/powertoolsteam/p/top-9-javascript-charting-libraries.html 当前,数据可视化已经成为数据科学领域非常重要的一部分。不同网络系统中产生的数据,都需要经过适当的可视化处理,以便更好的呈现给用户读取和分析。 对任何一个组织来说,如果能够充分的获取数据、可视化数据和分析数据,那么就能很大程度上帮助了解数据产生的深层次原因,以便据此做出正确的决定。 对于前端开发人员
现代社会早已进入读图时代,图像在一定上程度上取代了文字,占据了主导地位。对于数据分析来说,一张清晰的可视化图表确实比纷繁复杂的数字更清晰美观。随着科技的发展以及可视化需求的急剧增大,涌现了大批的数据可视化工具,通过对比分析市面上众多的数据可视化工具之后,我们挑选了几款给大家进行参考。
数据可视化的意义 1. 表达观点 人类是视觉动物,一张简单的数据可视化图表在传递大量信息的同时,能更加直观地阐述观点,为浏览者带来更深刻的印象。比如最为经典的就是1857年,南丁格尔设计的玫瑰图。她讲每月牺牲的战士数量以及死亡原因,列成一张图表,直观的表达了战争的可怕以及军队医疗条件的重要性。 这张图很简单,但是却真正直接客观的将各种数据展示在女王面前,从而为军队赢来更好的医疗条件。这是当时的数据可视化,也是真正的一图胜千言的代表。 2. 发现联系 在错综复杂的数据中,很难发现
用Excel的话,很难展示出这种效果,那……不如用Python?不用手动排版设计,简单的代码就能直接运行出结果。
图表对于数据的可视化和网站的吸引力非常重要。可视化演示使得分析大块数据和传达信息变得更加容易。 图表库使您能够以一种令人惊叹的、易于理解的和交互式的方式可视化数据,并改进您的网站设计。
專 欄 ❈陈键冬,Python中文社区专栏作者 GitHub: https://github.com/chenjiandongx ❈ 恭喜本社区专栏作者陈键冬开源项目pyecharts上榜Githu
随着数据收集和使用持续呈指数级增长,对这些数据进行可视化的需求变得越来越重要。开发人员寻求将数百万个数据库记录整合到美丽的图表和仪表板中,人类可以快速直观地解释这些记录。
引言 最近,我一直在看美国德克萨斯州奥斯汀举办的SciPy 2015会议上的一段视频——“用Blaze和Bokeh创建Python数据应用程序”,并且情不自禁地反复思考这两个库赋予世界各地使用Python的数据科学家们的强大能力。在本文中,我将带你体验使用Bokeh实现数据可视化的各种可能途径,以及Bokeh为什么是每位数据科学家的必备“神器”。 什么是Bokeh? Bokeh是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别。正如下图所示,它说明了B
我们通常看到的小而美的图表,一般都是经过图表制作者深层次加工过的成品。 而要想了解一个规范的商务图表制作过程,对图表的拆解与还原就显得非常重要。 今天的案例是关于三家电子消费业巨头:三星、苹果、华为的
关于转载授权 大数据文摘作品,欢迎个人转发朋友圈,自媒体、媒体、机构转载务必申请授权,后台留言“机构名称+文章标题+转载”,申请过授权的不必再次申请,只要按约定转载即可,但文末需放置大数据文摘二维码。 大数据文摘愿意为读者打造高质量【可视化讨论群】,措施如下 (1)群内定期组织分享 (2)确保群内分享者和学习者数量适合(1:1),有分享能力者不限名额,学习者数量少于分享者,按申请顺序排序。 点击文末“阅读原文”填表入群 编译:黄念 席雄芬 校对:王婧 图片来源:bokeh.pyda
图1所示的图表包含了两个折线图系列、两个堆积面积图系列。所使用的示例数据如下图2所示。
数据可视化正在帮助全球公司识别模式,预测结果并提高业务回报。可视化是数据分析的一个重要方面。简而言之,数据可视化以可视格式传达表格或空间数据的结果。图像有能力吸引注意力并清晰地传达想法。这有助于决策制定并推动改进行动。
今天要跟大家分享的图表是细分市场矩阵! ▽▼▽ 只是名字听起来比较洋气,其实在制作方法上,还不外乎我们这几期所讲解的,数据错行组织及时间刻度的技巧! ●●●●● 本案例将给大家讲解两种思路来制作市场分
随着互联网在各行各业的影响不断深入,数据规模越来越大,各企业也越来越重视数据的价值。作为一家专业的数据智能公司,个推从消息推送服务起家,经过多年的持续耕耘,积累沉淀了海量数据,在数据可视化领域也开展了深入的探索和实践。
Echarts是由百度提供的数据可视化解决方案, 可以让我们快速实现功能丰富的图表,官网链接
excerpt: ECharts 是一个使用 JavaScript 实现的开源可视化库,涵盖各行业图表,满足各种需求,本文介绍如何在 Hexo 博客中使用 ECharts 插件。
今天跟大家分享的是think-cell chart系列的第7篇——堆积面积图。 堆积面积图是很常用的反应数据变动趋势和内部结构的图表类型,在excel中制作也很简单。 那么在think-cell c
历时365天,【Excel催化剂】与【EasyShu】联手升级的Excel图表插件EasyCharts 2.0版本-EasyShu,即将面世。接下来我们会陆陆续续介绍插件的各种功能,同时内测,等内测结束就发布。我们先新型面积图开始讲解。
▽▼▽ 这种图表制作起来步骤并不复杂,主要是排版和图表元素格式化需要一些精加工。 ●●●●● 下面是制作步骤: ▷首先整理源数据如下: ▷为了防止横轴时间变迁过长造成标签被自动压缩倾斜,我把横坐标
作者 | 吕薇,腾讯员工 来源 | 互娱增值服务部 原文标题 | 浅析数据可视化与应用思路 一 好的数据可视化图表可以救命 约翰·斯诺(John Snow)在1854年制作了伦敦霍乱地图,通过标记死亡地图,清晰的了解到霍乱的源头,总而挽救了无数的生命。 (图片来源百度) 南丁格尔玫瑰图通过简单数据对比,更明晰表达军队医院季节性死亡率,打动了军方高层,军事改良提案得到了支持,方案实施后,伤员的死亡率很快从42%降低到了2% (图片来源百度) 说回到我们现实的生活,当前和平年代,可视化也是在不断帮
Excel 基本可以实现一维和二维图表的绘制,今天先总体介绍Excel的基本图表类型和图表选择的基本原则。
摘要 Highcharts图表控件是目前使用最为广泛的图表控件。本文将从零开始逐步为你介绍Highcharts图表控件。通过本文,你将学会如何配置Highcharts以及动态生成Highchart图表。 ---- 目录 前言(Preface) 安装(Installation) 如何设置参数(How to set up the options) 预处理参数(Preprocess the options) 活动图(Live charts) ---- 一、前言(Preface) Highcharts是一个非常
数据可视化是一种将密集复杂数据信息以视觉图形的形式呈现。设计出来的视觉效果简化了数据,让用户分析研究比较数据变得容易以及可以更好地向领导或者团队讲述“故事”——可以帮助用户更好地做出决策。
领取专属 10元无门槛券
手把手带您无忧上云