在推荐系统领域,内容推荐是一种常用的方法,它根据用户的历史行为数据或偏好信息,分析用户对内容的喜好,然后推荐与用户喜好相似的其他内容。本文将详细介绍内容推荐的原理、实现方式以及如何在Python中应用。
音频按顺序分别为参考音频 1、以参考音频 1 的声线为输入的生成句子 1(Take a look at these pages for crooked creek drive.)、生成句子 2(There are several listings for gas station.)、参考音频 2、以参考音频 2 的声线为输入的生成句子 1(同上)、生成句子 2(同上)。
人可以通过听觉感知位置、运动、音调、音量、旋律并获取信息。日常生活中,音频是一种重要的多媒体数据,我们会收听电台节目、欣赏在线音乐等。
大型语言模型以其强大的性能及通用性,带动了一批多模态的大模型开发,如音频、视频等。
Opera 成立于 1995 年,总部位于挪威奥斯陆,是全球领先的浏览器提供商及数字内容发现和推荐平台领域的先驱。20 多年来,数百万名用户通过 Opera 网页浏览器访问网站、阅读、进行创作以及使用其他网络娱乐功能。
腾讯云向量数据库(Tencent Cloud VectorDB)的 Python SDK 与Java SDK 是基于数据库设计模型,遵循 HTTP 协议,将 API 封装成易于使用的 Python 与 Java 函数或类,为开发者提供了更加友好、更加便捷的数据库使用和管理方式。
通过将复杂的对象(例如文本、图像或声音)转换为数值向量,并在多维空间中进行相似性搜索,它能够实现高效的查询匹配和推荐。
AI 参与的语音世界真神奇,既可以将一个人的语音换成任何其他人的语音,也可以与动物之间的语音互换。
对,就是你每日敲击的键盘。当指尖在键盘上跳跃,清脆的噼啪声此起彼落时,你输入的所有信息,包括那些情真意切的词句,那些不欲人知的心事,还有你的网络账户、银行密码……全都被它泄露了。
萧箫 发自 凹非寺 量子位 | 公众号 QbitAI 只需3秒钟,一个根本没听过你说话的AI,就能完美模仿出你的声音。 例如这是你的一小句聊天语音: 这是AI根据它模仿你说话的音色: 是不是细思极恐? 这是微软最新AI成果——语音合成模型VALL·E,只需3秒语音,就能随意复制任何人的声音。 它脱胎于DALL·E,但专攻音频领域,语音合成效果在网上放出后火了: 有网友表示,要是将VALL·E和ChatGPT结合起来,效果简直爆炸: 看来与GPT-4在Zoom里聊天的日子不远了。 还有网友调侃,(继AI搞
随着智能音箱、语音助手等应用的出现,普通人也可以像科幻场景一样使用语音与机器进行交流。语音关键词检测是实现人机语音交互的重要技术,被广泛地应用于各类智能设备、语音检索系统当中。语音关键词检测可以分成两种,一种是用于设备唤醒、设备控制keyword spotting;一种是应用于语音文档检索的spoken termdetection,二者虽然名字类似,但从功能侧重和技术路线上都有所区别。本次分享介绍语音关键词检测的主要方法与最新进展。
选自Baidu.Research 作者:Chao Li、Ajay Kannan 和 Zhenyao Zhu 机器之心编译 参与:吴攀 对话常常涉及到多个说话人,在这样的场景中,机器需要具备识别不同说话人的能力才能发挥更大的价值。近日,百度的一篇论文提出一种新的端到端的基于神经网络的说话人识别系统 Deep Speaker,实验表明该系统显著优于之前的基于 DNN 的 i-vector 方法。今天早些时候,百度发布了一篇技术博客对这项研究进行了解读,机器之心对本文进行了编译介绍,论文原文请访问:https:/
在深度学习领域的实践中,一般会涉及到向量化处理的数据,如图像、文本、音频等,这些数据的存储和检索对于许多深度学习任务至关重要。传统的关系型数据库和NoSQL数据库在存储和检索这类大规模向量数据时,通常不能满足高效、精确的查询需求。因此,如何优化向量数据的存储和检索,成为了当前深度学习场景下需要解决的重要问题。
我们知道,GPT、DALL-E 等大规模生成模型彻底改变了自然语言处理和计算机视觉研究。这些模型可以生成高保真文本或图像,而且它们有个重要特点就是「通才」,可以解决没训过的任务。相比之下,语音生成模型在规模和任务泛化方面一直没有「突破性」成果。
以上是我们一个个IT领域工程师都会有的困惑,单个人精力有限,有的人擅长工程实践,有的人擅长算法模型,所以得需要找到一个中间衔接点,这个点就是 "Elasticsearch”
Milvus 是一款开源的向量相似度搜索引擎,支持使用多种 AI 模型将非结构化数据向量化,并为向量数据提供搜索服务。Milvus 集成了 Faiss、Annoy 等广泛应用的向量索引库,开发者可以针对不同场景选择不同的索引类型。使用 Milvus 就可以以相当低的成本研发出最简可行产品。
内容来源:量子位,链接:https://mp.weixin.qq.com/s/EpP4C4kVhsSaLBhj_9wB7w
随着人工智能模型规模不断扩大,如何让这些“大模型”更高效地为用户服务成为重要课题。向量数据库正是在此背景下应运而生的一款数据库,它利用向量来高效地存储和检索模型数据,大大提升了查询效率
我是高月洁,来自网易云音乐,是K歌综合评分系统的项目负责人,同时也负责包括音乐业务、直播业务与嗓音分析相关的内容。
另外还有一个多模态融合的问题。看上图示意,应该是每个模态embedding单独与user embedding进行相似度训练。**这样做的话,每个item就会存在3个embedding。线上服务召回TopK时需要去重。但这种方案就忽略了不同模态之间的权重。**我想到的另外一种方案是,将各模态的embedding concat起来,全连接映射到user embedding 相同维度(即 item embedding),再做相似度训练。但这会出现的问题是:有些直播间可能不存在Song ID,需要做特征缺失处理。
ES 的全文搜索简而言之就是将文本进行分词,然后基于词通过 BM25 算法计算相关性得分,从而找到与搜索语句相似的文本,其本质上是一种 term-based(基于词)的搜索。
这篇文章我们主要关注的是基于内容的推荐算法,它也是非常通用的一类推荐算法,在工业界有大量的应用案例。
在以前的博客基于指纹音乐检索于,我们介绍的基本流程,现并未做过多介绍。本博客将详细叙述检索的详细原理和实现。
---- 新智元报道 编辑:LRS 【新智元导读】微软新模型VALL-E实现地表最强zero-shot语音合成,刚开口声音就被偷了? 让ChatGPT帮你写剧本,Stable Diffusion生成插图,做视频就差个配音演员了?它来了! 最近来自微软的研究人员发布了一个全新的文本到语音(text-to-speech, TTS)模型VALL-E,只需要提供三秒的音频样本即可模拟输入人声,并根据输入文本合成出对应的音频,而且还可以保持说话者的情感基调。 论文链接:https://arxiv.org
向量数据库是一种特殊的数据库,它专门用于存储和管理向量数据。向量数据是指由多个数值组成的数据,这些数值通常表示某种特征或属性。例如,一张图片可以表示为一个由像素值组成的向量,一个文本可以表示为一个由单词频率组成的向量。
K-means 算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,两个对象的距离越近,其相似度就越大。而簇是由距离靠近的对象组成的,因此算法目的是得到紧凑并且独立的簇。
它成功将一个在自然语言处理领域的Transformer模型迁移到计算机视觉领域。从那时起,计算机视觉领域的进步已经加速。
海量高维数据查找与某个数据最相似的一个或者多个数据。与其它基于Tree的数据结构,诸如KD-Tree、SR-Tree相比,它较好地克服了Curse of Dimension,能够将KNN的时间复杂度缩减到sub-linear。LSH多被用于文本、多媒体(图像、音频)的相似性判断。
语义搜索和检索增强生成(RAG)正在彻底改变我们的在线交互方式。实现这些突破性进展的支柱就是向量数据库。选择正确的向量数据库能是一项艰巨的任务。本文为你提供四个重要的开源向量数据库之间的全面比较,希望你能够选择出最符合自己特定需求的数据库。
Milvus 是一款云原生向量数据库,它具备高可用、高性能、易拓展的特点,用于海量向量数据的实时召回。
随着人工智能、数据挖掘等技术的飞速发展,海量数据的存储和分析越来越成为重要的研究方向。在海量数据中找到具有相似性或相关性的数据对于实现精准推荐、搜索等应用至关重要。传统关系型数据库存在一些缺陷,例如存储效率低、查询耗时长等问题,因此,新型向量数据库应运而生。
机器之心专栏 作者:字节跳动智能创作团队 字节跳动智能创作团队研发了业内首个通用视频转场推荐方案 AutoTransition。目前,AutoTransition的衍生技术已经成功落地于字节跳动多项智能编辑业务中。 随着短视频的迅猛发展和普及,每天都有海量用户通过视频来记录和分享生活。对于缺乏专业剪辑和视频编辑知识的普通用户而言,视频的制作和剪辑却具有很高的门槛。近期,字节跳动智能创作团队研发了业内首个通用视频转场推荐方案 AutoTransition,致力于解决目前视频剪辑中存在的学习成本高,编辑效率低等
向量是数学、物理学和工程科学等多个自然科学中的基本概念,它是一个具有方向和长度的量,用于描述问题,如空间几何、力学、信号处理等。在计算机科学中,向量被用于表示数据,如文本、图像或音频。此外,向量还代表AI模型对文本、图像、音频、视频等非结构化数据的印象。
『音视频技术开发周刊』由LiveVideoStack团队出品,专注在音视频技术领域,纵览相关技术领域的干货和新闻投稿,每周一期。点击『阅读原文』,浏览第92期内容,祝您阅读愉快。 架构 从通信到AI FreeSWITCH与WebRTC FreeSWITCH是一个开源的软交换平台,具有模块化结构,支持包括WebRTC在内的多种互通互联。本文来自FreeSWITCH 中文社区创始人杜金房在LiveVideoStack线上交流分享中的演讲,详细介绍了FreeSWITCH的功能特性、架构以及现状。 如何利用免版
矢量数据库是为实现高维矢量数据的高效存储、检索和相似性搜索而设计的。使用一种称为嵌入的过程,将向量数据表示为一个连续的、有意义的高维向量。
向量数据库是一种专为高效存储和检索高维向量数据而设计的数据库系统。这些向量通常来源于机器学习和深度学习模型对非结构化数据(如文本、图像、音频、视频)的编码处理。通过将原始数据转化为密集的数值向量,向量数据库能够支持诸如相似性搜索、推荐系统、图像检索、语音识别等多种应用场景。
本章介绍如何使用PaddlePaddle实现简单的声纹识别模型,本项目参考了人脸识别项目的做法PaddlePaddle-MobileFaceNets ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接。
1、能否用最通俗的语言介绍下什么是向量,什么是向量数据库,它和传统数据库有什么区别?
越来越多的研究表明,只要有足够大的语料库,几乎任何人的面部动作都可以与语音片段同步。今年6月,三星(samsung)的应用科学家详细介绍了一种端到端的模型,该模型能够在人的头颅中对眉毛、嘴、睫毛和脸颊进行动画处理。仅仅几周后,Udacity发布了一个系统,该系统可以从音频叙述中自动生成独立演讲视频。
近日,Meta AI 宣布在生成式 AI 语音模型领域取得了突破:开发出了首个可泛化至多种语音生成任务的模型 Voicebox,无需专门训练即可达成顶尖性能表现。Meta AI 研究人员分享了多段音频样本和一篇研究论文,其中详细介绍了他们采用的方法和取得的成果。
6月29日,音视频及融合通信技术技术沙龙圆满落幕。本期沙龙特邀请腾讯云技术专家分享关于最新的低延迟技术、全新的商业直播方案等话题,针对腾讯云音视频及融合通信产品的技术全面剖析,为大家带来纯干货的技术分享。下面是孙祥学老师关于AI技术在视频智能识别和分析中的应用,以及实际落地过程中遇到的挑战以及解决办法的分享。
本章介绍如何使用Pytorch实现简单的声纹识别模型,本项目参考了人脸识别项目的做法Pytorch-MobileFaceNet ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接。
本文中,Google 团队提出了一种文本语音合成(text to speech)神经系统,能通过少量样本学习到多个不同说话者(speaker)的语音特征,并合成他们的讲话音频。此外,对于训练时网络没有接触过的说话者,也能在不重新训练的情况下,仅通过未知说话者数秒的音频来合成其讲话音频,即网络具有零样本学习能力。
V-Express是腾讯AI实验室开发的一款头像视频生成工具,它能够综合考虑姿态、图像输入和音频,生成逼真的视频。特别地,它针对音频信号较弱的情况进行了优化,解决了在不同控制信号强度下生成头像视频的难题。
本文讲解音频检索技术及其广泛的应用场景。以『听曲识歌』为例,技术流程为具对已知歌曲抽取特征并构建特征向量库,而对于待检索的歌曲音频,同样做特征抽取后进行比对和快速匹配。
领取专属 10元无门槛券
手把手带您无忧上云