首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

颤振中导航器路线变化的观测器

是一种用于监测和记录颤振现象中导航器路线变化的设备。颤振是指结构物在特定条件下发生的自激振动现象,可能对导航器的精确性和稳定性产生负面影响。为了准确评估和预测颤振对导航器的影响,需要使用观测器来记录导航器路线的变化情况。

观测器通常由传感器、数据采集系统和数据分析软件组成。传感器可以测量导航器在颤振过程中的位置、速度和加速度等参数。数据采集系统负责收集传感器产生的数据,并将其存储在数据库中进行后续分析。数据分析软件可以对采集到的数据进行处理和分析,以提取有关颤振对导航器路线变化的相关信息。

颤振中导航器路线变化的观测器在航空航天、建筑工程、桥梁设计等领域具有重要应用价值。通过监测和分析导航器路线的变化,可以评估结构物的稳定性和安全性,并采取相应的措施来减轻颤振对导航器的影响。

腾讯云提供了一系列与云计算相关的产品,其中包括云服务器、云数据库、云存储等。这些产品可以为用户提供稳定可靠的云计算基础设施,帮助用户实现高效的数据存储、处理和分析。具体产品介绍和相关链接如下:

  1. 云服务器(ECS):提供弹性计算能力,支持多种操作系统和应用程序。了解更多:腾讯云云服务器
  2. 云数据库(CDB):提供高可用、可扩展的数据库服务,支持多种数据库引擎。了解更多:腾讯云云数据库
  3. 云存储(COS):提供安全可靠的对象存储服务,适用于各种数据存储和备份需求。了解更多:腾讯云云存储

请注意,以上仅为腾讯云的部分产品介绍,更多产品和服务可以在腾讯云官网上查看。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 案例:数控机床主轴校准与颤振监测系统

    提高生产数量与产品质量始终是制造业努力追求的目标,工业4.0更勾勒出智能制造的美好愿景,促使被制造业视为是重要生产设备的CNC工具机(数控机床)也得因应这样的趋势不断地精益求精。而数控机床制造商在积极改善自家机器性能并提升加工精度以符合客户需求的过程中,机器校准正确与否是影响加工精度的重要因素之一。但一直以来制造业都是靠累积多年经验的老师傅来进行机器校准,工厂每日必须先以这种传统作法来检查设备才能正式开工;如果该厂需要制造的产品种类较多,每一次产线调整时还得再次为机器重新设定与校准。如此不科学的作业模式既繁琐又费时,一旦作业程序有所疏失就会发生加工精度失准的问题。

    04

    通过自动强化学习(AutoRL)进行远程机器人导航 | 强化学习系列

    仅在美国就有300万人因行动不便而无法离开家门。可以自动长距离导航的服务机器人可以提高行动不便人员的独立性,例如,通过为他们提供杂货,药品和包裹。研究表明,深度强化学习(RL)擅长将原始感官输入映射到动作,例如学习掌握物体和机器人运动,但RL 代理通常缺乏对长距离导航所需的大型物理空间的理解,并且很难适应新的空间。 在最近的三篇论文中,“ 使用AutoRL学习导航行为端到端 ”,“ PRM-RL:通过结合强化学习和基于采样的规划来实现远程机器人导航任务 ”,以及“ 使用PRM进行远程室内导航” RL “,我们通过将深度RL与远程规划相结合来研究易于适应的机器人自治。我们培训当地规划人员执行基本的导航行为,安全地穿越短距离而不会与移动的障碍物发生碰撞。当地规划人员采用嘈杂的传感器观测,例如一维激光雷达提供到障碍物的距离,并输出机器人控制的线性和角速度。我们使用AutoRL训练本地计划员进行模拟,AutoRL是一种自动搜索RL奖励和神经网络架构的方法。尽管它们的范围有限,只有10到15米,但是当地的规划者可以很好地转移到真正的机器人和新的,以前看不见的环境。这使我们能够将它们用作大空间导航的构建块。然后,我们构建路线图,其中节点是位置的图形,只有当本地规划人员能够可靠地模拟真实机器人及其噪声传感器和控制时,边缘才能连接节点。 自动化强化学习(AutoRL)

    05

    Matlab自动化控制-Adrc自抗扰控制参数调节

    以最简单的线性组合方法(1)为例,大概有如下参数需要调节: TD: delta h ESO: B01、B02、B03和观测器带宽w0 非线性反馈:(beta1、beta2)用kp和kd代替,alpha 对于TD,一般的仿真模型delta 可以尽量大一些,在100~500范围内基本相同,即使再大效果也基本不会有大的提升。h即仿真模型中的仿真步长。 ESO的三个参数和观测器带宽有关,依次设置为3w0、3w0^2、 w0^3就可以满足要求。 所以最终需要调节的参数只有四个:kp kd w0 alpha。这时候就可以控制变量了。 基本规律是: alpha越小调节时间越短,但是过小会导致震荡。 w0越小调节时间越长,震荡幅度越小。 Kp越大调节时间越短,震荡越大。 kd效果不太明显,可在稳定后微调。 经验就是: 1、确保ADRC建模过程中没有错误 2、确保输入的测试信号的幅值对你的被控对象是合理的

    03

    ADRC自抗扰控制,有手就行「建议收藏」

    关于ADRC的优点本人不会赘述,毕竟作为一个ADRC算法都推导不出来的应用工程师,最希望看到的就是有手就行的操作方法。ARC的缺点就显而易见,就是参数多,一环ADRC大概就有11个参数,但一个粗略的效果很快就出来。本文所有的言论仅以我最近的一次速度闭环控制经验之谈,并没有经过大量的实验验证其绝对正确性,慎用(注:文中公式来自于csdn用户:遥远的乌托邦,有稍作修改)。   ADRC说白了就是PID的升级版,保留了PID的优点,改良了PID的缺点,其结构和PID一样,ADRC可以被看作三个作用效果的结合,分别是TD(跟踪微分器)、ESO(扩张状态观测器)、NLSEF(非线性控制律)。TD是为了防止目标值突变而安排的过渡过程;ADRC的灵魂就在于ESO,其作用下文给客官细细道来;NLSEF是为了改良PID直接线性加权(输出=比例+积分+微分)的缺点而引进的非线性控制律,其更符合非线性系统。

    05

    一文尽览 | 2023最新自动驾驶车辆控制全面综述!(状态估计/轨迹控制/框架应用等)

    车辆控制是自动驾驶汽车、车联网和自动化汽车中最关键的挑战之一,在车辆安全、乘客舒适性、运输效率和节能方面至关重要。本次调查试图对车辆控制技术的现状进行全面彻底的概述,重点关注从微观层面的车辆状态估计和轨迹跟踪控制到宏观层面的CAV协同控制的演变。首先从车辆关键状态估计开始,特别是车辆侧滑角,这是车辆轨迹控制的最关键状态,以讨论具有代表性的方法。然后提出了用于AVs的符号车辆轨迹跟踪控制方法。除此之外,还进一步审查了CAV的协作控制框架和相应的应用程序。最后对未来的研究方向和挑战进行了讨论。本次调查旨在深入了解AVs和CAV车辆控制的最新技术,确定关键的重点领域,并指出进一步探索的潜在领域。

    02
    领券