首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

风控中台架构

是一种基于云计算技术的系统架构,旨在为企业提供全面的风险控制和管理解决方案。它通过集成各种风险管理工具和数据源,实现风险评估、监控和预警,帮助企业降低风险并提升业务安全性。

风控中台架构的主要特点包括:

  1. 模块化设计:风控中台架构采用模块化设计,将风险管理的各个功能模块进行解耦,使得系统更加灵活和可扩展。
  2. 数据驱动:风控中台架构依赖于大数据和人工智能技术,通过对海量数据的分析和挖掘,实现对风险的准确预测和控制。
  3. 实时监控:风控中台架构具备实时监控能力,能够对业务流程和风险事件进行实时监测和响应,及时发现和处理潜在的风险。
  4. 自动化决策:风控中台架构通过引入机器学习和自动化决策技术,实现对风险事件的自动识别和处理,提高决策的准确性和效率。

风控中台架构的应用场景包括金融行业、电商平台、物流行业等各个领域。在金融行业中,风控中台架构可以用于实现对借贷、信用卡、支付等业务的风险管理;在电商平台中,可以用于防止虚假交易、欺诈行为等风险;在物流行业中,可以用于货物追踪、异常事件监测等风险控制。

腾讯云提供了一系列与风控中台架构相关的产品和解决方案,包括云服务器、云数据库、云安全产品等。具体推荐的产品包括:

  1. 云服务器(CVM):提供高性能、可扩展的云服务器实例,满足风控中台架构对计算资源的需求。产品介绍链接:https://cloud.tencent.com/product/cvm
  2. 云数据库(CDB):提供可靠、安全的云数据库服务,支持多种数据库引擎,满足风控中台架构对数据存储和管理的需求。产品介绍链接:https://cloud.tencent.com/product/cdb
  3. 云安全产品:包括DDoS防护、Web应用防火墙(WAF)、安全加速等产品,用于保护风控中台架构的安全性和稳定性。产品介绍链接:https://cloud.tencent.com/product/ddos

通过使用腾讯云的产品和解决方案,企业可以快速搭建和部署风控中台架构,实现对风险的全面管理和控制。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

ML | 的异常检测原理与应用

今天来介绍一下的异常检测,从最基础的概念开始讲起,因为本人对这块的内容平时工作也做得不多,更多滴偏向于“纸上谈兵”,有什么说得不对的地方,也欢迎各位朋友指正~谢谢。...异常检测的概念 02 异常检测的难点 03 异常检测的分类及常见算法 01 异常检测的概念 异常检测(Anomaly Detection 或 Outlier Detection),又称为离群点检测,在我们领域很多地方都会用到...抽象来说,就是需要从一堆数据,找到那个“邻舍不同”(粤语)的点,并能够给出合理的判断和解释。 02 异常检测的难点 为什么说异常检测很难呢?...主要有几个原因: 1)异常点和噪声会混杂在一起,机器难以具体识别开来; 2)现实很少有异常点的标签,因为标签越多也就意味着遇到过的异常越多,也不符合常识认知; 3)对于标签的定义也是很难,比如1个金融场景...所以很多时候我们在操作的过程,会先用无监督方法挖掘出异常样本,再基于这些样本去做有监督模型挖掘更多的异常点,这中间也多了一层转化,所以准确率和置信度上也有一定的下滑。

2.8K20

ML | 建模怎么做拒绝推断

02 为什么要做拒绝推断 在我们的生活,有很多关于幸存者偏差的例子,比如我们身边的同事月收入都是过万,就误以为大多数人都是这样子,身边的人都是本科毕业,就以为大多数人都上过大学。...《建模的样本偏差与拒绝推断》https://zhuanlan.zhihu.com/p/88624987 不过我也还是把他文章里的分类体系在这里重点再次分享一下。...以上的5个步骤,就是实施拒绝推断推断法之一的展开法。...06 总结一下 本文算是一个对拒绝推断的入门介绍了,让初涉模型的同学有一个相对来说比较清晰的全局认识,这里面涉及到的很多算法模型上的细节并没有展开来讲,因为我觉得这也会让阅读带来比较大的负担,公众号的文章还是要控制在几分钟内读完比较合适...Reference [1] 异常检测算法分类及经典模型概览 https://blog.csdn.net/cyan_soul/article/details/101702066 [2] 建模的样本偏差与拒绝推断

1.8K30
  • ML | 建模的KS

    我们这做模型的时候,经常是会用KS值来衡量模型的效果,这个指标也是很多领导会直接关注的指标。今天写一篇文章来全面地剖析一下这个指标,了解当中的原理以及实现,因为这些知识是必备的基本功。...不过这不影响我们去使用它,我们只需要知道在是怎么实现的,并且在实际场景怎么去使用它就可以了。就如上面我们说的,KS在主要是用于评估模型的好坏样本区分度高低的。什么是区分度?...可以看下图: 从业务上来说,就是越往后的箱子,客户的质量越差,rate整体上呈现单调性,从而可以把大多数的坏人,直接从箱的维度上就可以区分开来了,在后续的策略使用体验上十分友好。...02 KS的生成逻辑 KS的生成逻辑公式也是十分简单: 好样本累计占比坏样本累计占比 在领域,我们在计算KS前一般会根据我们认为的“正态分布原则”进行分箱,一般来说分成了10份,然后再进行KS的计算...03 KS的效果应用 KS的值域在0-1之间,一般来说KS是越大越有区分度的,但在领域并不是越大越好,到底KS值与模型可用性的关系如何,可看下表: 004 KS的实现 首先我们来对上面展示的例子进行

    4.6K30

    ML | 建模GBDT和XGBoost怎么调优

    03 什么建模场景下常用这两个明星算法?...贷 B卡(行为评分卡):S级出场率。 交易反欺诈:A级出场率,主要是支付,防止客户进行薅羊毛、套现等行为。 客户流失:A级出场率。 贷后 催收告警:A级出场率。 迁徙率预测:B级出场率。...在模型我们经常也是用来做分类(Classification),但我们知道GBDT的基分类器是CART,即Classification And Regression Tree,所以也可以支持回归建模...而关于模型怎么调优,我会在下一节一起讲。...模型怎么调优 关于模型的调优,先前有篇文章讲得比较细致《ML[7] | 模型调优的思路有哪些》,大家可以移步去回顾一下。

    1.5K30

    的大数据

    的意义 何为?字面含义就是对于风险的控制从而使财务不受到损失。对于任何一家金融机构(包括银行,小贷,P2P等)来说,的重要性超过流量、体验、品牌这些人们熟悉的指标。...这其中除了一部分明显的自融欺诈外,大多数平台垮掉的原因还是不过关。 ◆◆◆ 2. 的核心 风险控制需要做什么?与逾期率的绝对数值相比,对风险的控制能力要重要得多。...国际上传统的方法 的核心是要准确预测每一笔借款违约概率。显而易见,这需要量化的工具,也就是模型。...x ,y:在美国,人们一般在上大学的时候就会拥有人生第一张信用卡。这样等到后续买房(房贷)买车(车贷)的时候,就已有了不短的信用历史了。...大数据的挑战 伴随着机遇同样也有挑战。就像要有美味的菜肴,我们既需要好的材料,也需要好的厨师,当前大数据在运用的挑战主要还是在数据和人才这两方面。

    1.5K120

    大厂的引擎架构设计

    1 架构师能力思维模型全局思维抽象思维2 新需求的思考路径需求是否合理,是否能解决问题?能划分多少个子系统?每个子系统能划分多少个模块?这个系统需要可靠性吗,需要扩展能力吗?成本需要控制吗?...3 引擎设计的核心点架构会围绕核心点进行设计:3.1 高效率的规则(策略)选代风险规则可动态,自由组合的调整风险规则设计思路风险规则可由多个基础规则(因子)组成风险规则就是与(AND)或(OR)非(...将所有的事件数据进行统一管理从任意的数据源以流式传输大量的事件数据不同的业务场景,包含不同的事件类型(evenType),事件接入中心是整个引擎的数据流入口。...包含数据:3.5 服务稳定可靠服务高可用+熔断降级。...因此,得到最终的4 引擎的系统架构图说一大段话,不如画一张图让人更加容易理解:业务架构图应用架构图需要划分出系统的层级,各个层级的应用服务数据架构图技术架构

    11500

    系统敏感词校验架构设计

    这里想到了自己经常联调的同学违禁词识别场景。和某明星塌房需要拦截关键词一毛一样。在联调之余有幸请教了的几位同学,再此学习了一下系统敏感词校验的设计方案。...DEMO逻辑为读取数据库全量违禁词存储到内存,流量来了以后for循环处理,校验是否命中违禁词。...System.out.println(wordItem); } } } public static List cacheInit() { // 从数据库查询违禁词集合...终极方案:新增或者删除以后【自动或者人工】感知到这种变更,然后变更通知到系统的Listener,重新读取全量的数据。...当一个流量来了以后,此时会把这个流量分配给多个POD节点,最后在主节点进行聚合,从而实现大量关键词存储内存的解决方案。 那么切片的规则是什么?

    51310

    ML | 建模的WOE与IV

    ML」系列文章,主要是分享一下自己多年以来做金融的一些事一些情,当然也包括建模、机器学习、大数据等相关技术分享,欢迎同行交流与新同学的加入,共同学习,进步!...第一次接触这两个名词是在做模型的时候,老师教我们可以用IV去做变量筛选,IV(Information Value),中文名是信息值,简单来说这个指标的作用就是来衡量变量的预测能力强弱的,然后IV又是...: 第i组响应客户数量 : 全部响应客户数量总和 :第i组未响应客户数量 :全部未响应客户数量总和 响应/未响应:指的是自变量每个记录对应的目标变量的值,目标变量的值为0或1,...04 Python实现 我们知道,针对连续型变量,是需要先转换为类别变量才可以进行IV值的计算的,现在我们把数据导入到Python,原始变量是连续型变量,那么我们如何在Python里实现IV值的计算呢

    3.6K20

    第四范式智能架构设计及应用

    导读:是金融最常见的场景之一,本文将从业务和技术架构两个层面和大家探讨如何落地智能系统。...分享主要围绕下面五点展开: 的设计背景 策略的全周期管理 模型的全周期管理 业务架构和能力原子化 应用案例 -- 01 的设计背景 首先大风体系或者的建设在本质上是服务于业务的...,所以我们需要构建一个以业务为核心的体系。...通常会是集团化的业务,会涉及多条业务线的整体使用,因此打通数据和信息做到平台级的最大化的防,也是非常重要的。...在建设全景时需要考虑不同子公司不同业务线的全覆盖,譬如普惠金融、信用卡业务等;针对集团各子公司,要考虑全部客户服务的全覆盖;对于大型集团需要考虑不同场景的全覆盖;在渠道角度也需要考虑诸如柜台、手机银行

    2.7K40

    信贷模型搭建及核心模式分类

    2.评分卡的意义 在互联网金融体系,量化分析需要贯穿始终,评分卡模型是其中非常重要的一环。...3.评分卡的开发应用 在互联网金融评分卡开发过程,我们仔细研究了企业操作流程,反复推敲了模型构建步骤,最后我们认为从业务应用角度,评分卡开发应用应遵循: 业务定义➡️风险定义 ➡️风险分解➡️...直到我们和某P2P公司的经理实际交流后才明白这其中的含义。在传统银行信用卡业务,是很喜欢这类少量逾期的客户的,因为他们能给银行创造罚息,但是又不是恶意违约那种客户。...另外,模型在不同的阶段体现的方式和功能也不一样。...所以说,模型的计算策略和机制在一个公司属于绝密,规则除了核心的员工,其他人是不能知道规则的。 四、的核心 如果说金融产品的核心是,那么的核心是什么?

    2.3K10

    建模的IV和WOE

    建模IV(信息价值)和WOE(证据权重)分别是变量筛选和变量转换不可缺少的部分。 很多文章已经讨论过这两个变量,本文在吸收前人优秀成果的基础上,希望用通俗易懂的语言让大家快速理解这两个变量。...并用简单的例子让大家明白在实际如何运用这两个变量,最后给出建模过程实际需要用到的Python代码。 1....表 1 - 极端例子1(用第一种方法算WOE) 从表1可知,如果该分箱坏人在总坏人中的占比和的该分箱的好人在总好人中占比相同,WOEi为0。...表 3 - 极端例子2(算IV) 从表3知,该组别坏样本占比和好样本占比的差异性越大,该组WOEi的绝对值越大。...,针对不在组别1的数据另外进行分析。

    2.1K30

    支付模型

    二、基于规则的 规则是最常用的,也是相对来说比较容易上手的模型。从现实情况总结出一些经验,结合名单数据,制定规则,简单,有效。 常见的规则有: 1....比如: 用户ID是在黑名单。 用户身份证号在反洗钱黑名单。 用户身份证号在公检法协查名单。 用户所使用的手机号在羊毛号名单列表。...互联网金融离不开机器学习,特别是支付。 在各种支付模型,决策树模式是相对比较简单易用的模型。 如下的决策树模型,我们根据已有的数据,分析数据特征,构建出一颗决策树。...这个过程,将在下一篇的架构中介绍。 五、模型评估 本质上是对交易记录的一个分类,所以对模型的评估,除了性能外,还需要评估“查全率”和“查准率”。...支付场景分析 ; 支付数据仓库建设 ; 支付模型和流程分析(本文); 支付系统架构 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn

    2K21

    为本创新驱动,券商如何实现智能加速?

    某证券行业头部券商在二十余年创新发展过程逐渐形成了以为本创新驱动,服务实体经济发展的理念。在战略规划中将金融科技应用视作首要战略支柱,长远目标是要打造智慧型数字化金融平台。...而由于合规处于企业核心竞争力的高度,原数据积累10年,数据量已超30TB。...原“IOE架构”出现了性能瓶颈以及各方面管理问题,具体体现如下: 01 随着业务的发展以及数据量的激增,原有平台开始遭遇IO访问及内部数据交换的瓶颈。非现场平台各项报表和查询生成时间逐渐拉长。...解决方案 沃趣科技以QData高性能数据库云平台作为数据库基础架构平台替换原传统“烟囱式”系统架构,承载合规核心数据库系统,助力业务处理效率大幅提升。...价值提升 1 通过QData数据库云平台大幅提升了系统的业务效率,日终调度业务从原十几个小时缩短至1.5小时,性能提升10倍以上。

    1.2K10

    的大数据和机器学习

    本篇文章只关注个人信用借款的。抵押贷,企业贷不在讨论范围。 ◆ ◆ ◆ 1. 的意义 何为?字面含义就是对于风险的控制从而使财务不受到损失。...做得好与坏直接决定了一家公司的生与死,而且其试错成本是无穷大的,往往一旦发现出了问题的时候就已经无法挽回了。截止到2015年底,全国总共3000多家P2P平台里超过三分之一已经倒闭。...这其中除了一部分明显的自融欺诈外,大多数平台垮掉的原因还是不过关。 ◆ ◆ ◆ 2. 的核心 风险控制需要做什么?与逾期率的绝对数值相比,对风险的控制能力要重要得多。...国际上传统的方法 的核心是要准确预测每一笔借款违约概率。显而易见,这需要量化的工具,也就是模型。...大数据的挑战 伴随着机遇同样也有挑战。就像要有美味的菜肴,我们既需要好的材料,也需要好的厨师,当前大数据在运用的挑战主要还是在数据和人才这两方面。

    91830

    决策引擎经验

    一套完整的体系,在,少不了决策引擎,今天就浅谈一下决策引擎。 一、优先级 决策引擎是一堆规则的集合,通过不同的分支、层层规则的递进关系进行运算。...而既然是组合的概念,则在这些规则,以什么样的顺序与优先级执行便额外重要。 系统的作用在于识别绝对与标识相对风险,如果是绝对,则整套的审核结果便将是“拒绝”。...而一些通过对接外部三方征信的规则,需支出相关查询费用的,则靠后运行。此外,在外部三方征信的规则,命中式收费的规则(如黑名单与反欺诈)又可以优先于每次查询式收费的规则(如征信报告)运行。...三、记录与统计 最终到底是“跑出来”的,所以,整个系统对所有不同规则的触发需进行有效的记录与统计,以便后期可支持数据分析与模型调整的相关工作。...具体的记录与统计内容,主要如下: 1、触发的具体规则 举例说明:通过两种不同的视角进行记录,一是用户与订单层面,记录其所触发的明细规则;二是规则层面,记录某条规则具体的触发率。

    1.1K30

    必做的数据分析

    大数据领域就没有不做数据分析的,大数据也不例外。 我的观点是和其他互联网业务都是互通的,本文介绍下风必做的数据分析,用以说明数据分析是一通百通的。 工欲善其事,必先利其器。...01 业务理解 如果一家金融机构聘请你给他们的业务做咨询,你知道怎么办吗? 别告诉我,你想硬搬建模比赛的那套东西。不要掉价。 解决方案一定是针对当前业务和用户客群独家定制的。...通过KYC,你可以大致知道发力的方向在哪里,是拓展新户还是挖掘存户,是提升能力还是优化产品设计,等等。 02 漏斗分析 进件漏斗分析可以帮助我们定位到产品设计的薄弱位置,从而针对优化。...vintage分析把不同期的样本放在了一起,可以用来观察不同期客群风险的变化,然后确定是流量本身的变化,还是宏观形形势的变化,还是策略的变化等等。...如大家所见,在领域所在的数据分析,应该和其他互联网领域的数分并无本质区别。 因为和其他业务一样,本质都是用户生命周期管理。基于相同的底层逻辑,数据分析必然也并无二致。

    1.2K30
    领券