首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

二维高斯曲面拟合法求取光斑中心及算法的C++实现

(1)二维高斯去曲面拟合推导 一个二维高斯方程可以写成如下形式: ? 其中,G为高斯分布的幅值,,为x,y方向上的标准差,对式(1)两边取对数,并展开平方项,整理后为: ?...假如参与拟合的数据点有N个,则将这个N个数据点写成矩阵的形式为:A = B C, 其中: A为N*1的向量,其元素为: ? B为N*5的矩阵: ? C为一个由高斯参数组成的向量: ?...(2)求解二维高斯曲线拟合 N个数据点误差的列向量为:E=A-BC,用最小二乘法拟合,使其N个数据点的均方差最小,即: ?...(3)C++代码实现,算法的实现过程中由于涉及大量的矩阵运算,所以采用了第三方的开源矩阵算法Eigen,这里真正用于高斯拟合的函数是 bool GetCentrePoint(float& x0,float...函数bool GetCentrePoint(float& x0,float& y0)主要用于对数据点进行二维高斯曲面拟合,并返回拟合的光点中心。

2.4K21
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用Python拟合两个高斯分布及其在密度函数上的表现

    要拟合两个高斯分布并可视化它们的密度函数,您可以使用Python中的scipy.stats模块来拟合分布,并使用matplotlib来绘制密度函数。...下面我将演示了如何拟合两个高斯分布并绘制它们的密度函数:1、问题背景用Python拟合两个重叠的高斯分布,使用分布函数比使用密度表示拟合效果更好。将拟合结果转换回密度表示时,结果看起来不合理。...,拟合的分布函数和高斯分布都与原始数据吻合得很好。...而核密度估计出的密度曲线也与原始数据吻合得很好,这表明核密度估计方法可以用于估计两个重叠的高斯分布的密度。...这段代码首先生成了两个高斯分布的随机数据,然后使用curve_fit函数拟合高斯函数,最后绘制了原始数据的直方图以及拟合的两个高斯分布的密度函数。您可以根据需要调整参数和绘图样式。

    33210

    时隔四年,无意中看到了双重高斯分布拟合

    高斯分布在自然界非常常见,中心极限定理很好的说明了它,但事情往往不是那么纯粹,很多时候我们得到的结果里面会混入两个截然不同的样本数据集,它们虽然各自都是高斯分布,但是它们的均值和方差都不一样,如果拿到的是它们的混合数据...,就不能简单的使用一个高斯拟合来处理它了。...如果我们有比较强的背景知识,或者看了如下分布的条形图,会下意识的猜想出是两个高斯分布的混合,但是想从数据的角度来探索,两个独立的高斯分布各自独立的均值和方差该如何推测出来呢? ?...= FALSE, epsilon = 1e-03)) out hist(waiting) plot(out,2) 可以看到,很简单一个函数,就可以把faithful这个数据框里面的waiting列的数据进行双重高斯分布拟合...,前面我们模拟的是平均值分别是0和1的两个分布,但是函数拟合后是0和2的两个高斯分布,如下: ?

    2.4K10

    通过哈密顿蒙特卡罗(HMC)拟合深度高斯过程,量化信号中的不确定性

    一般情况下第一件事将数据拟合到线性回归模型,因为这是最简单的模型。但是在大多数现实世界的临床数据中,这几乎不会得到给出任何信息。...所以我们要选择一种更好的方法,比如将其建模为高斯过程(GP)为什么呢是告诉过程呢? 首先,让我们回顾一下什么是高斯过程(GP)。...将临床信号视为平稳高斯过程 当执行 GP 建模时,所有数据点都被认为是从多元高斯分布中提取的 这里有两点需要注意。...通过为时间变量引入额外的GP,我们以一种灵活的方式“扭曲”了测量时间点之间的间隔,从而产生了预期的效果。 但它也使拟合复杂化了!...蓝点是用于拟合的数据,灰色虚线是相同分布的相似样本,黑线是代表这些样本的平均值信号。 灰色线条是为了给我们一个来自这个分布的数据的不确定性的视觉感官。

    38610

    高斯模糊的算法

    "模糊"的算法有很多种,其中有一种叫做"高斯模糊"(Gaussian Blur)。它将正态分布(又名"高斯分布")用于图像处理。 ? 本文介绍"高斯模糊"的算法,你会看到这是一个非常简单易懂的算法。...三、高斯函数 上面的正态分布是一维的,图像都是二维的,所以我们需要二维的正态分布。 ? 正态分布的密度函数叫做"高斯函数"(Gaussian function)。它的一维形式是: ?...其中,μ是x的均值,σ是x的方差。因为计算平均值的时候,中心点就是原点,所以μ等于0。 根据一维高斯函数,可以推导得到二维高斯函数: 有了这个函数 ,就可以计算每个点的权重了。...五、计算高斯模糊 有了权重矩阵,就可以计算高斯模糊的值了。 假设现有9个像素点,灰度值(0-255)如下: ? 每个点乘以自己的权重值: ? 得到 ? 将这9个值加起来,就是中心点的高斯模糊的值。...对所有点重复这个过程,就得到了高斯模糊后的图像。如果原图是彩色图片,可以对RGB三个通道分别做高斯模糊。 六、边界点的处理 如果一个点处于边界,周边没有足够的点,怎么办?

    1.3K90

    【理解机器学习中的过拟合与欠拟合】

    过拟合的表现: 训练集表现非常好:训练数据上的准确率高,误差低。 测试集表现很差:新数据上的准确率低,误差大。 模型太复杂:比如使用了不必要的高阶多项式或过深的神经网络。...1.2 欠拟合(Underfitting) 欠拟合是什么? 欠拟合就是模型“学得太少了”。它只掌握了最基本的规律,无法捕获数据中的复杂模式。...2.1 防止过拟合的方法 获取更多数据 更多的数据可以帮助模型更好地学习数据的真实分布,减少对训练数据细节的依赖。 正则化 正则化通过惩罚模型的复杂度,让模型不容易“过拟合”。...2.2 防止欠拟合的方法 增加模型复杂度 增加模型的参数,比如更多的神经元或更深的网络层。 延长训练时间 欠拟合可能是因为训练时间不够长,模型没有学到足够的规律。 3。...四、代码与图像演示:多项式拟合的例子 下面通过一个简单的例子,用多项式拟合来直观感受过拟合与欠拟合。

    19310

    机器学习模型的容量、欠拟合和过拟合

    图中最左侧使用线性回归 来对一个数据集进行拟合,这个模型无法捕捉到数据集中的曲率信息,有欠拟合(Underfitting)的可能。...中间的图增加了一个二次项,用 来拟合,相当于增加了一维特征,我们对特征补充得越多,拟合效果就越好。不过,增加太多特征也会造成不良后果,最右边的图就是使用了五次多项式 来进行拟合。...最后这个模型可以精确地拟合每个点,但是它并没有诠释数据的曲率趋势,这时发生了过拟合(Overfitting)。或者说,中间那个模型泛化能力较好,左右两侧的模型泛化能力一般。...机器学习领域的一大挑战就是如何处理欠拟合和过拟合问题。我们必须考虑: 降低模型在训练集上的误差。 缩小训练集误差和测试集误差之间的差距。...通过调整模型的容量(Capacity),我们可以控制模型是否偏向于过拟合或欠拟合。模型的容量是指其拟合各种函数的能力,容量低的模型很难拟合训练集,容量高的模型可能会过拟合。

    1.2K30

    高斯模糊的算法(转)

    它将正态分布(又名"高斯分布")用于图像处理。 本文介绍"高斯模糊"的算法,你会看到这是一个非常简单易懂的算法。...三、高斯函数 上面的正态分布是一维的,图像都是二维的,所以我们需要二维的正态分布。 正态分布的密度函数叫做"高斯函数"(Gaussian function)。...它的一维形式是: 其中,μ是x的均值,σ是x的方差。因为计算平均值的时候,中心点就是原点,所以μ等于0。 根据一维高斯函数,可以推导得到二维高斯函数: 有了这个函数 ,就可以计算每个点的权重了。...五、计算高斯模糊 有了权重矩阵,就可以计算高斯模糊的值了。 假设现有9个像素点,灰度值(0-255)如下: 每个点乘以自己的权重值: 得到 将这9个值加起来,就是中心点的高斯模糊的值。...对所有点重复这个过程,就得到了高斯模糊后的图像。如果原图是彩色图片,可以对RGB三个通道分别做高斯模糊。 六、边界点的处理 如果一个点处于边界,周边没有足够的点,怎么办?

    4.1K10

    概念理解:通俗的“过拟合与欠拟合”直观解释

    【导读】前几天,应用数据科学研究者William Koehrsen发布一篇关于“过度拟合和拟合不足”的博文,作者解释了在模型训练中过拟合与欠拟合的概念与原因,并解释了方差与偏差的概念,并介绍了克服模型过拟合与欠拟合的方法...也许你曾看过关于“过拟合与欠拟合”的博文,但是本文绝对也值得一看,因为作者使用现实生活中的例子进行概念讲解,把概念的理解变成一个有趣的过程,相信会令您耳目一新! ? Overfitting vs....这就是所谓的欠拟合:相反,如果训练数据过于紧密,一个欠拟合的模型会忽略了训练数据中的经验教训,并且没有学习到输入和输出之间的基本关系。 我们以我们的例子来考虑这个问题。...本文中涉及的概念: 过拟合:对训练数据过度依赖。 欠拟合:不了解训练数据中的关系。 高方差:模型在训练数据上发生显著变化。 高偏差:对模型的假设导致忽略训练数据。...过拟合和欠拟合会导致测试集的泛化能力差。 模型调整的验证集可以防止欠拟合和过拟合。 数据科学和其他技术领域不应该脱离我们的日常生活。通过用现实世界的例子来解释概念,我们可以更好地理解这些概念。

    1.3K60

    线性回归的高斯假设

    我们来尝试解决一个完整的线性回归问题: 设: 训练样本(x,y),其中x是输入特征,y是目标变量 回归方程的形式是: (1) 我们假设误差项: 服从独立同分布的高斯分布( ),即 (2) (...这里对误差项服从的分布的假设,直观地理解,就是误差在越接近0的地方出现的概率越大,越远离0的地方出现的概率越小,在0两边出现的概率对称,并且误差服从的分布总是让多次测量的均值成为对真值最好的估计。...至于为什么符合这些直观感受的误差的概率密度函数恰好是(2)式?...梯度下降的过程是: Step 1 给定 的初始值,计算 ; Step 2 在 的基础上减去 在该点的梯度,得到新的 ,计算 ; Step 3 重复以上步骤,直到 取到局部最小值; Step...梯度方向是 (6) 的反方向,因此用梯度下降法迭代 的过程可以写为: (7) 观察用梯度下降法迭代 的过程,迭代效果的好坏对 初始值的选择、迭代步长 有很高的依赖,在工程上对线性回归的优化通常是基于这两点展开

    4.1K10

    过拟合检测:使用Keras中的EarlyStopping解决过拟合问题

    过拟合是深度学习模型训练中常见的问题之一,会导致模型在训练集上表现良好,但在测试集上表现不佳。Keras中的EarlyStopping回调函数是解决过拟合问题的有效方法之一。...引言 在深度学习模型的训练过程中,过拟合是一种常见且难以避免的问题。过拟合会导致模型在训练集上表现很好,但在测试集或新数据上表现不佳。...过拟合的常见原因 ⚠️ 模型复杂度过高:模型包含过多的参数,能够拟合训练数据中的所有细节和噪声。 训练数据不足:训练数据量不足,导致模型只能记住训练数据而无法泛化到新的数据。...如果在指定的epoch数量内,模型在验证集上的性能没有提升,训练将提前停止,从而防止过拟合。 如何使用EarlyStopping解决过拟合问题 1....,模型防止过拟合的方法也在不断改进。

    15910

    教程 | 如何判断LSTM模型中的过拟合与欠拟合

    也许你会得到一个不错的模型技术得分,但了解模型是较好的拟合,还是欠拟合/过拟合,以及模型在不同的配置条件下能否实现更好的性能是非常重要的。...在本教程中,你将发现如何诊断 LSTM 模型在序列预测问题上的拟合度。完成教程之后,你将了解: 如何收集 LSTM 模型的训练历史并为其画图。 如何判别一个欠拟合、较好拟合和过拟合的模型。...下面就是一个缺乏足够的记忆单元的欠拟合模型的例子。...良好拟合实例 良好拟合的模型就是模型的性能在训练集和验证集上都比较好。 这可以通过训练损失和验证损失都下降并且稳定在同一个点进行诊断。 下面的小例子描述的就是一个良好拟合的 LSTM 模型。...具体而言,你学到了: 如何收集 LSTM 模型的训练历史并为其画图。 如何判别一个欠拟合、良好拟合和过拟合的模型。 如何通过平均多次模型运行来开发更鲁棒的诊断方法。 ?

    9.9K100

    深度学习中模型训练的过拟合与欠拟合问题

    在机器学习和深度学习的模型训练中,过拟合和欠拟合是训练模型时常见的两种问题,它们会严重影响模型的泛化能力。一个好的训练模型,既要避免欠拟合,也要避免过拟合。...解决过拟合和欠拟合问题是机器学习中的重要任务之一,需要通过合适的调整模型结构、优化算法和数据处理方法来寻找合适的平衡点,以获得更好的泛化性能。...过拟合的结果过拟合的直接结果是模型的泛化能力变差。这意味着,尽管模型在训练集上能够达到很高的准确率,但在新的、未见过的数据上表现却大打折扣。...导致欠拟合的原因欠拟合的发生通常是由于模型无法捕捉到数据中的基本模式或趋势。以下是几种常见的导致欠拟合的原因:模型过于简单:当使用的模型复杂度不足以捕捉数据中的模式时,就会发生欠拟合。...此外,增加训练数据量也是减少过拟合的有效手段之一。针对欠拟合:需要确保模型具有足够的复杂度以捕捉数据中的模式。

    17320

    TensorFlow从1到2(八)过拟合和欠拟合的优化

    从图中识别过拟合和欠拟合 先借用上一篇的两组图: ? ? 先看上边的一组图,随着训练迭代次数的增加,预测的错误率迅速下降。 我们上一篇中讲,达到一定迭代次数之后,验证的错误率就稳定不变了。...如果数据集足够大,较多的训练通常都能让模型表现的更好。过拟合对于生产环境伤害是比较大的,因为生产中大多接收到的都是新数据,而过拟合无法对这些新数据达成较好表现。...欠拟合与此相反,表示模型还有较大改善空间。上面两组图中,左侧下降沿的曲线都可以认为是欠拟合。表现特征是无论测试集还是验证集,都没有足够的正确率。当然也因此,测试集和验证集表现类似,拟合非常紧密。...欠拟合的情况,除了训练不足之外,模型不够强大或者或者模型不适合业务情况都是可能的原因。 实验模拟过拟合 我们使用IMDB影评样本库来做这个实验。...优化过拟合 优化过拟合首先要知道过拟合产生的原因,我们借用一张前一系列讲解过拟合时候用过的图,是吴恩达老师课程的笔记: ?

    1.3K20
    领券