【导读】专知成员Hui上一次为大家介绍主成分分析(PCA)、以及其在图像上的应用,这一次为大家详细讲解SciPy库的使用以及图像高斯模糊实战。 【干货】计算机视觉实战系列01——用Python做图像处理(基本的图像操作和处理) 【干货】计算机视觉实战系列02——用Python做图像处理(Matplotlib基本的图像操作和处理) 【干货】计算机视觉实战系列03——用Python做图像处理(Numpy基本操作和图像灰度变换) 【干货】计算机视觉实战系列04——用Python做图像处理(图像的缩放、均匀操作和直
在图像领域,各个位置的像素值使用“周边邻居像素点加权平均”重新赋值。对于每个像素点,由于计算时均以当前像素点为中心,所以均值μ=0。使用时有2个超参数需要设置:高斯核大小和高斯函数标准差σ。高斯核大小表示“影响当前点的邻域范围”,而标准差表示“邻域中的其他像素点对当前点的影响力”。
Python可以使用opencv库很方便地生成模糊图像,如果没有安装opencv的,可以用pip安装:
cv2是计算机视觉处理中应用比较多的第三方库,里面还包含一些训练好的识别模型,比如人脸识别、人眼识别等模型,此次想实现一个图片差异判别的程序。下面的两张图存在一些不一样的地方,能看出来吗?(原谅我特丑的钥匙串) 图片1
图像边缘检测是计算机视觉和图像处理中的重要任务,它用于检测图像中物体和区域之间的边缘和轮廓。在Python中,有多种方法可以进行图像边缘检测,本文将介绍一种常用的方法:Canny边缘检测算法。
我们知道图片除了最普通的彩色图,还有很多类型,比如素描,卡通,黑白等等,今天就介绍如何使用python和opencv来实现图片变素描图。
均值滤波是低通滤波,线性滤波器,其输出为邻域模板内像素的平均值,用于图像的模糊和降噪。
我们现在经常用到的马赛克其实起源于建筑上的图案装饰,如今马赛克常用于图像或视频的模糊处理。随着技术的进步,打码与去码变成了一种常见的技术研究方向,同时也掀起了一场技术与道德的“战争”。
ROI(Region Of Interest),感兴趣区域,从被处理的图像以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域,称为感兴趣区域,经常用来连接图像。
- 高斯噪声(Gaussian noise)是指它的概率密度函数服从高斯分布的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。
之前写过一篇博文:opencv中初学者必须了解的5个函数-灰度化、模糊、Canny边缘检测、膨胀和侵蚀,是用C++ OpenCV实现的,对应代码如下:
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类、目标检测应用。
由于很多小伙伴反应抛开原理或理论讲解使用用法对于初学者来说会很舒服,从本节开始将会以比较简单的方式进行讲解相关API的应用。
我们知道图片除了最普通的彩色图,还有很多类型,比如素描、卡通、黑白等等,今天就介绍如何使用 Python 和 Opencv 来实现图片变素描图。
常用的图像处理技术有图像读取,写入,绘图,图像色彩空间转换,图像几何变换,图像形态学,图像梯度,图像边缘检测,图像轮廓,图像分割,图像去噪,图像加水印以及修复水印等
概述: 椒盐噪声(salt & pepper noise)是数字图像的一个常见噪声,所谓椒盐,椒就是黑,盐就是白,椒盐噪声就是在图像上随机出现黑色白色的像素。椒盐噪声是一种因为信号脉冲强度引起的噪声,产生该噪声的算法也比较简单。
来源:机器学习那些事本文约2700字,建议阅读5分钟本文中的人体肤色检测功能采用 OpenCV 库实现。 http://www.demodashi.com/demo/12967.html 概述 本文中的人体肤色检测功能采用 OpenCV 库实现。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上. 它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口
如果我们环顾房间,我们会看到大量的物体,每一个都很容易区分,并有自己独特的边缘。我们区分物体的先天能力部分来自于我们的视觉系统检测边缘的能力。检测边缘是视觉的一项基本任务,尽管没有它我们不会完全失明,但以前区分物体的简单任务将变得非常具有挑战性。电脑也是类似的,计算机要检测物体,首先需要识别边缘。
这一系列的文章已经写了第二篇了,所以这个系列将会转变为连载文章,每当我有什么新的发现,都会更新。
SIFT特征是非常稳定的图像特征,在图像搜索、特征匹配、图像分类检测等方面应用十分广泛,但是它的缺点也是非常明显,就是计算量比较大,很难实时,所以对一些实时要求比较高的常见SIFT算法还是无法适用。如今SIFT算法在深度学习特征提取与分类检测网络大行其道的背景下,已经越来越有鸡肋的感觉,但是它本身的算法知识还是很值得我们学习,对我们也有很多有益的启示,本质上SIFT算法是很多常见算法的组合与巧妙衔接,这个思路对我们自己处理问题可以带来很多有益的帮助。特别是SIFT特征涉及到尺度空间不变性与旋转不变性特征,是我们传统图像特征工程的两大利器,可以扩展与应用到很多图像特征提取的算法当中,比如SURF、HOG、HAAR、LBP等。夸张一点的说SIFT算法涵盖了图像特征提取必备的精髓思想,从特征点的检测到描述子生成,完成了对图像的准确描述,早期的ImageNet比赛中,很多图像分类算法都是以SIFT与HOG特征为基础,所有SIFT算法还是值得认真详细解读一番的。SIFT特征提取归纳起来SIFT特征提取主要有如下几步:
可以直接去https://github.com/murtazahassan/Learn-OpenCV-cpp-in-4-Hours/blob/main/Resources/test.png地址直接下载到。
这一次继续为大家详细讲解SciPy库的使用以及图像导数实战。
平滑一般也称“模糊”,是一种简单而又常用的图像处理操作。平滑图像的目的有很多,但通常都是为了减少噪声和伪影。在降低图像分辨率的时候,平滑也是十分重要的。OpenCV 提供5种不同的平滑操作,每种操作都有对应的函数实现,这些操作平滑的结果有着细微的差别。
图像去噪在二值图像分析、OCR识别预处理环节中十分重要,最常见的图像噪声都是因为在图像生成过程中因为模拟或者数字信号受到干扰而产生的,常见的噪声类型有如下:
我们都知道拍摄相片容易,但是想拍摄高质量的图片却很难,它需要良好的构图和照明。此外,选择正确的镜头和优质的设备也会提高图像的质量。但是,最重要的是,拍摄高质量的图片需要良好的品味和判断力,也就是我们需要专家级的眼光。
最近,微信跳一跳小游戏迅速走红并且在朋友圈刷屏,游戏的规则很简单,就是控制一个小矮子再各个墩子上跳来跳去。由于游戏比较简单,一时间大家都玩起来了,这也带动了一些作弊的产生。Android和iOS的小程
本系列课程是针对无基础的,争取用简单明了的语言来讲解,学习前需要具备基本的电脑操作能力,准备一个已安装python环境的电脑。如果觉得好可以分享转发,有问题的地方也欢迎指出,在此先行谢过。
用python的OpenCV实现视频文件的处理,用videoCapture打开视频文件,读取每一帧进行处理,然后用videoWriter保存成视频。
识别道路上的车道是所有司机的共同任务,以确保车辆在驾驶时处于车道限制之内,并减少因越过车道而与其他车辆发生碰撞的机会。
数独对计算机来说不是什么难事,但就是这样一个“平平无奇”的项目却登上了GitHub今日的热榜。
最近基于 Android StackBlur 开源库,根据自己碰到的需求场景,封装了个高斯模糊组件,顺便记录一下。
一,高斯模糊简介 高斯模糊是图像处理中常用的一种操作,用于减少图像细节,平滑图像。简单来说,高斯模糊的处理过程,是让图像每个像素都取周边像素的平均值,是参照正态分布的加权平均值。 比如kernel为3*3的高斯模糊,就是取每个像素周围8个点再加上该像素的加权平均值,每个点的权重如图1。 图1 kernel为3的高斯模糊,每点权重值 高斯模糊每个点的权重分配以正态分布为依据。一维正态分布函数 函数图像如图2。 图2 一维标准正态分布 不同的 ,对应不同的函数图像,如图3。另外正态分布函数中
这也是一种很好的艺术效果,苹果惯用的毛玻璃效果本质便是高斯模糊,而我们将图片模糊后作为网站背景,既减小了图片的体积,也能别有一番风味。(譬如咱站点的背景也是高斯模糊后的产物。)
很早之前写过pillow中的滤镜处理,当时主要还是利用滤镜公式实现的,今天用矩阵试一下模糊滤镜。
本文首先介绍图像处理中最基本的概念:卷积;随后介绍高斯模糊的核心内容:高斯滤波器;接着,我们从头实现了一个Java版本的高斯模糊算法,以及实现RenderScript版本。
这些聚类算法各有优缺点,适用于不同类型的数据和不同的应用场景。选择合适的聚类算法通常取决于具体的需求、数据的特性和计算资源。
图像/视频超分领域近期并无突破性的方法出现,故近期计划将图像/视频超分相关方法进行一次综述性汇总。计划从不同点出发对图像/视频超分进行一次“反思”之旅。本文是该旅程的第一站:图像降质过程。
一、高斯模糊的概念 高斯模糊,也叫高斯平滑,英文为:Gaussian Blur,是图像处理中常用的一种技术,主要用来降低图像的噪声和减少图像的细节。高斯模糊在许多图像处理软件中也得到了广泛的应用。
来自:阮一峰的网络日志 链接:www.ruanyifeng.com/blog/2012/11/gaussian_blur.html 通常,图像处理软件会提供"模糊"(blur)滤镜,使图片产生模糊的效
如果使用过PS之类的图像处理软件,相信对于模糊滤镜不会陌生,图像处理软件提供了众多的模糊算法。高斯模糊是其中的一种。
图像边缘是指图像属性区域和另一个属性区域的交接处,是区域属性发生突变的地方,是图像不确定性最大的地方,也是图像信息最集中的地方,图像的边缘包含着丰富的信息
"模糊"的算法有很多种,其中有一种叫做"高斯模糊"(Gaussian Blur)。它将正态分布(又名"高斯分布")用于图像处理。
本例中我们采用数字图像处理中经常用到的一副标准图像lena.png作为测试图像,如下图所示:
我们在平时的开发中模糊是非常常用的技能,在android中有java的开源方案,也有RenderScript方案,今天我们来学习实践通过OpenGL如何实现高斯模糊。 在工作中用到的高斯模糊,也只是做到基本的简单实用,为什么能实现以及是否可以性能优化点提升速度降低内存,之前都欠考虑。 通过这篇我们来学习高斯模糊的原理、实现以及优化,我们的旅程开启。
初学OpenCV的开发者很容易被OpenCV中各种滤波方法所困扰,不知道到底该用哪里一个来做滤波。表面原因看起来是因为OpenCV中各种滤波方式实在是太多太杂,其背后原因是对各种滤波方法的应用场景认知出现了问题,所以这里小编从应用场景与项目中解决问题的实际出发,跟大家一起探讨一下各种滤波方法。 一:模糊函数blur 参数说明 -参数InputArray表示输入图像Mat对象 -参数OutputArray表示模糊之后输出Mat对象 -参数Size表示卷积核大小,此参数决定模糊程度,Size(x, y)其中x,
这里是 RenderDemo 的第三篇:用 OpenGL 实现高斯模糊。我们分别在 iOS 和 Android 平台实现了用 OpenGL 对图像进行高斯模糊处理并渲染出来。效果图如下:
http://www.jianshu.com/u/cfec7d70bbec
领取专属 10元无门槛券
手把手带您无忧上云