9月4日,腾讯云正式发布多脸融合新产品,该产品在之前单脸融合的基础上,新增多脸融合和选脸融合。同时,内置新型算法,让融合效果表现更优异。.../选脸融合 支持多脸、选脸融合,最多支持指定融合3张人脸,可应用在全家福、与明星合照等多人场景,增加活动的互动趣味性。...支持鉴黄鉴政:如果客户有鉴黄鉴政的需求,需要检测并过滤用户上传的色情、恐暴、政治敏感人物等,可推荐使用腾讯云的图像内容审核接口 ,通过设置相应的阈值来限制敏感人物、低俗照片的使用,提高活动的合规性和安全性...2.png 2-应用于文娱、美妆、换脸类小程序、APP 为文娱、美妆、换脸等小程序、APP提供单脸、多脸融合功能,间接帮助拉新、导流、提升活跃与留存。...1.png 【限时福利】 现购买人脸融合活动授权费、QPS、资源包,享有 9月限时8折特惠。 【小程序体验】 “腾讯云AI体验中心”小程序已同步上线单脸/多脸融合产品,扫码即可体验。
多业务:首页的访问量较大(千万级别pv),如何把流量分配给不同的业务就很关键。 推荐感知:虽然用户的目标单一,但是如何做到推荐结果的多样性就需要对其优化。...58app首页推荐业务 ( 多品类推荐 ) 主要面临的挑战在于: 如何满足用户对于不同品类的兴趣?( 用户兴趣问题 ) 推荐的业务比例如何和平台的业务比例进行匹配?...兴趣策略 这个优化主要针对第一个挑战:强兴趣下的多业务融合。 常见的推荐系统,如新闻推荐、视频推荐、商品推荐等都是要先建立用户和商品之间的联系,然后通过适当的算法进行匹配。...业务流量分配策略 这个优化主要针对第二个挑战:多业务之间的流量均衡 实际业务需求: 由于58首页信息流是多品类混合推荐的场景,推荐的结果既要满足用户个性化需求,又要满足在整体上各业务的占比与58实际业务流量比例相符合...目前负责 APP 首页业务信息流推荐,致力于通过融合多业务、多策略推荐系统的迭代升级,支持流量分发,优化连接效率,提升用户体验。 今天的分享就到这里,谢谢大家。
但是其中一类方法非常特殊,我们称为多模型融合算法。融合算法的意思是,将多个推荐算法通过特定的方式组合的方法。融合在推荐系统中扮演着极为重要的作用,本文结合达观数据的实践经验为大家进行系统性的介绍。...常见的多模型融合算法 达观数据的众多实践发现,多模型融合算法可以比单一模型算法有极为明显的效果提升。但是怎样进行有效的融合,充分发挥各个算法的长处?...这里总结一些常见的融合方法: 1)线性加权融合法 线性加权是最简单易用的融合算法,工程实现非常方便,只需要汇总单一模型的结果,然后按不同算法赋予不同的权重,将多个推荐算法的结果进行加权,即可得到结果:...2) 交叉融合法 交叉融合常被称为Blending方法,其思路是在推荐结果中,穿插不同推荐模型的结果,以确保结果的多样性。...总结和展望 推荐系统中的融合技术是非常重要的一个环节,在实战中,灵活运用融合技术可以发挥各个算法的长处,满足多样的用户需求,大大提升推荐结果的质量,达观数据在此方面将不懈努力,探索出更多更好的应用。
多模型融合推荐算法在达观数据的运用 研发背景 互联网时代也是信息爆炸的时代,内容太多,而用户的时间太少,如何选择成了难题。...但是其中一类方法非常特殊,我们称为多模型融合算法。融合算法的意思是,将多个推荐算法通过特定的方式组合的方法。融合在推荐系统中扮演着极为重要的作用,本文结合达观数据的实践经验为大家进行系统性的介绍。...常见的多模型融合算法 达观数据的众多实践发现,多模型融合算法可以比单一模型算法有极为明显的效果提升。但是怎样进行有效的融合,充分发挥各个算法的长处?...2) 交叉融合法 交叉融合常被称为Blending方法,其思路是在推荐结果中,穿插不同推荐模型的结果,以确保结果的多样性。 这种方式将不同算法的结果组合在一起推荐给用户 ?...总结和展望 推荐系统中的融合技术是非常重要的一个环节,在实战中,灵活运用融合技术可以发挥各个算法的长处,满足多样的用户需求,大大提升推荐结果的质量,达观数据在此方面将不懈努力,探索出更多更好的应用。
TLDR: 针对序列推荐中模态融合的顺序挑战,本文提出了一种基于图的自适应融合方法,以实现灵活的模态特征融合,使每种模态都能优先考虑其固有的顺序或与其他模态的相互作用。...论文:arxiv.org/abs/2308.15980 代码:github.com/HoldenHu/MMSR 在序列推荐中,多模态数据(如文本或图像)可以提供关于物品的更加全面的特征信息。...然而当前的工作对何时将模态特征融合到物品表征这一问题存在不同的说法,即在序列建模前期还是后期将模态特征融合到物品表征中对推荐性能有所帮助存在争议。...具体的,本文介绍了一种多模态增强序列推荐框架(Multi-Modality enriched Sequential Recommendation,MMSR),该框架侧重于模态特征融合。...总之,本文介绍了一种多模态增强的序列推荐框架,它能在序列推荐中优化模态特征的融合机制。我们的方法解决了在顺序任务中融合多模态的复杂性问题,因为融合顺序会显著影响推荐模型的性能。
一.对数据的输入 A、如何获取你的点云数据(使用什么设备,查找相应设备的介绍,设备的精度、稳定度、抗噪能力、数据的可视深度范围等,采用无标记点融合,或标记点融合;要考虑多帧数据之间的旋转角度); B、如何将你的数据对象从环境中分割出来...(识别分割、手动分割CC),深度学习若能做分割,并且针对特定对象的效果还行的话,再结合PCL做多帧数据的融合,是一个创新点(前提是提高效率); C、对数据的输入输出要掌握,一般程序都是一样的,复制粘贴即可...二、对数据的预处理(融合肯定至少两帧数据) A、数据是否有噪声:根据噪声的类别,选择合适的算法进行去除(直通滤波、条件滤波、统计滤波、双边滤波等等); B、数据是否需要下采样:体素栅格滤波(参数的设置,...根据自己的目的,参考北航出的国内唯一一本PCL的书,同时兼顾PCL官网的更新内容); B、精配准执行前的准备:是否建立空间拓扑关系(一般需要建立,加快计算速度); C、是否需要剔除错误点对(一般需要剔除,提高融合精度...书以及官网都可查阅); D、执行计算,并输出精配准融合点云对象,输出精配R和T,输出精配时间,并可视化(保存或可视化都行)。
3 解决方案 针对上述问题,我们提出了一种融合多视图用户行为信息的多任务查询补全推荐方法,基本的解决思路包括两点: 在召回阶段,用参数化的神经网络序列生成模型根据前缀采用多样化beam search的解码策略自动...为了使生成模型和排序模型都能取得较高的预测准确率,设计模型时需要考虑的一个关键问题是:如何更好地建模和利用多视图的用户历史行为序列。 在搜索引擎中,用户行为常常是指搜索某个查询或浏览某个内容。...针对上述特点,我们将基于Self-Attention机制的Transformer模型引入到多视图用户行为序列的建模中,提出了一种新型的层次化行为序列编码模型:如下图左边方框内容所示,该编码模型包括行为(...Multi-head Pooling)机制用于获取每个行为的高层表示,并将对应的行为级别表示输入到一个上下文层次的Transformer模型中进行编码,通过Transformer本身的Self-Attention机制融合上下文信息实现行为语义的准确理解...5 总结 本工作提出了一种融合多视图用户行为序列信息的多任务个性化查询补全推荐框架:通过同时建模和利用多视图用户行为序列中丰富的个性化信息,使QAC模型能够更准确地预测用户当前的搜索意图;通过候选排序与查询生成的多任务学习
所以美团觉得,把这些多模态数据融入知识图谱,会对推荐系统产生很大的正面影响。一个简单的多模态知识图谱如下图: ?...MKGAT可以拆解为两个子模块,多模态embeding模块和推荐模块。...在介绍各个子模块前,我们先介绍两个小的模块: 多模态图谱实体编码器: 给不同类型实体编码 多模态图谱注意力层:用注意力机制,融合所有邻居节点的信息,学习新实体的embedding。...推荐模块 上一节只是把embeding学好了,但我们最终目标是给用户推荐商品。在推荐模块中,attention层依然可以复用,去融合邻居节点的信息。...论文还提到,多模态相比于没有多模态的图谱,对推荐效果的提升也是显而易见的。 ?
对于无人驾驶系统而言,多传感器已经是默认配置 一个简单的感知反馈模型其实只有两步:状态预测与测量更新 在多传感器条件下,各传感器之间想要同步反馈速度其实并无必要。
文章目录 多模态技术基础 1,多模态融合架构(神经网络模型的基本结构形式) 1.1联合架构 1.2协同架构 1.3编解码架构(自监督) 2,多模态融合方法 2.1早期融合 2.2 晚期融合 2.3混合融合...3,模态对齐方法 3.1显式对齐方法 3.2隐式对齐方法 4,开放数据与资源 多模态深度学习综述:网络结构设计和模态融合方法汇总 基于注意力机制的融合方法 基于双线性池化的融合办法 应用1:多模态摘要...1,多模态融合架构(神经网络模型的基本结构形式) 多模态融合的主要目标是缩小模态间的异质性差异,同时保持各模态特定语义的完整性,并在深度学习模型中取得最优的性能。...2,多模态融合方法 将多模态融合方法分为两大类:模型无关的方法和基于模型的方法,前者不直接依赖于特定的深度学习方法,后者利用深度学习模型显式地解决多模态融合问题,例如基于核的方法、图像模型方法和神经网络方法等...4,开放数据与资源 多模态深度学习综述:网络结构设计和模态融合方法汇总 基于注意力机制的融合方法 基于双线性池化的融合办法 应用1:多模态摘要(综合多模态信息生成内容摘要) 多模态摘要(Multi-modal
Tips: 代码可以配合自动驾驶定位算法(十五)-基于多传感器融合的状态估计(Multi-Sensors Fusion)进行阅读。...推荐阅读 自动驾驶定位算法(十五)-基于多传感器融合的状态估计(Multi-Sensors Fusion) 自动驾驶定位算法(十四)-递归贝叶斯滤波 自动驾驶定位算法(十三)-粒子滤波(Particle
FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错...
本文将探讨多模态图像融合技术在安全监控中的应用,包括其原理、应用场景以及部署过程。I....多模态图像融合技术概述多模态图像融合技术旨在将来自多个传感器或数据源的图像信息整合在一起,以获得比单一模态图像更全面、更准确的监控结果。...常见的多模态图像融合技术包括但不限于:特征级融合特征级融合技术是多模态图像融合中的一种重要方法,它旨在将不同图像源提取的特征进行有效融合,以增强监控系统对目标的检测和识别能力。...应用场景多模态图像融合技术在安全监控领域有着广泛的应用,其中一些典型的应用场景包括:边界监控: 在边界线或围栏周围部署可见光摄像头和红外摄像头,利用多模态图像融合技术监测和识别潜在的入侵者或异常行为。...模型训练和优化利用深度学习或传统机器学习算法,对采集到的多模态图像数据进行训练和优化,构建多模态图像融合模型。4.
(读论文)推荐系统之ctr预估-LR与GBDT+LR模型解析 特征交叉而提出的FM和FFM虽然能够较好地解决数据稀疏性的问题,但他们仍停留在二阶交叉的情况。...1.3 树模型对稀疏离散特征,处理较差 参考: 腾讯大数据:CTR预估中GBDT与LR融合方案 推荐系统遇上深度学习(十)–GBDT+LR融合方案实战 GBDT只是对历史的一个记忆罢了,没有推广性,...2 LightGBM + LR融合案例 一段核心代码,整体流程为: 源数据 -> 标准化 -> 训练LGM模型 -> 预测训练集+验证集的每个样本落在每棵树的哪个节点上 -> LGB的节点特征合并成为新的训练集
support_redirect=0&mmversion=false 附1、非常欣赏本论文的表达形式:把传感器与具体的应用场景糅合起来,通过视频的方式,让大众能够直观了解到该传感器的价值~ 附2、认同多源信息融合是传感器发展的方向
导读 本文主要针对直播中的用户行为(评论,礼物等)建模中的问题提出解决方案,以往关于直播礼物预测的研究将这项任务视为一个传统的推荐问题,并使用分类数据和观察到的历史行为对用户的偏好进行建模。...本文提出了基于实时多模态融合和行为扩展的MMBee方法。 首先提出了一个具有可学习查询的多模式融合模块(MFQ),用于感知流媒体片段的动态内容,并处理复杂的多模式交互,包括图像、文本评论和语音。...2.方法 alt text 2.1 多模态融合模块 对于每个直播片段,从每个片段中均匀地采样三帧,并对收集的ASR(自动语音识别)和评论文本进行过滤。...可学习查询首先通过cross attention与融合的多模态特征交互然后输入自注意力层 2.2 graph引导的兴趣扩展 2.2.1 user-to-author graph和author-to-author...为了消除预训练的节点表示与在线推荐模型之间的差距,在端到端训练的推荐模型中通过预测是否会打赏的二分类任务对其进行优化。
多源融合SLAM:现状与挑战 简介:协同定位与建图(SLAM),相信大家对这个概念应该都很陌生,但在机器人身上,这可是一项重要的技术。
情感表达的模态包括面部表情、语音、姿势、生理信号、文字等,情感识别本质上是一个多模态融合的问题。...提出一种多模态融合的情感识别算法,从面部图像序列和语音信号中提取表情和语音特征,基于隐马尔可夫模型和多层感知器设计融合表情和语音模态的情感分类器。...实验结果表明,融合表情和语音的情感识别算法在识别样本中的高兴、悲伤、愤怒、厌恶等情感状态时具有较高的准确率。...提出的多模态识别算法较好地利用了视频和音频中的情感信息,相比于仅利用语音模态的识别结果有较大的提升,相比于表情模态的识别结果也有一定改进,是一种可以采用的情感识别算法。
超易用的免费在线AI视频换脸你有没有梦想过成为电影明星?或者想制作一些搞笑的恶作剧视频来娱乐朋友?通过免费的在线AI换脸视频工具,这些愿望都可以实现!...特别说明,swapfaces.ai支持多人换脸。...优点:易于使用面部融合效果自然界面简洁缺点:视频换脸只能更换一个人的脸,无法更换多人的脸偶尔会出现故障带有水印无法在搭建网站时使用相关工具适用人群:教育人员私人定制社交媒体创作者安全性:所有用户数据在静态和传输过程中均已加密只有授权人员可以访问用户数据定期进行安全审计...Myimg.ai —— 高级AI换脸工具Myimg.ai的特点是: 它可以实现精确的微调和个性化定制,具有个性化定制、精确面部定位、可调节的融合强度、面部表情操控和背景去除等多项功能。...FaceSwapper —— 充满个性的AI换脸工具FaceSwapper.ai 是一款功能全面的免费在线AI换脸视频软件,深受广大用户喜爱。
在当今数字化时代,多模态数据融合已成为人工智能领域的热门话题。从智能手机、智能穿戴设备到自动驾驶汽车,我们身边的各种智能产品都在不断利用多模态数据融合技术,以提供更加丰富、准确和智能的服务。...多模态融合的重要性 多模态数据融合能够突破单一模态数据的局限性。例如,文本信息可以提供精确的语义描述,但缺乏直观的视觉感受;图像能直观地呈现场景,但难以传达抽象的概念。...这种多模态融合不仅提高了安防系统的效率,还能更准确地判断事件。 多模态融合的挑战 实现多模态融合并非易事。首先,不同模态的数据具有不同的特征和表示方式。...多模态融合的未来展望 随着人工智能技术的不断发展,多模态融合将成为未来智能发展的重要趋势。未来,我们可以期待更多创新的应用场景,如智能机器人、智能家居、虚拟现实等。...同时,多模态融合也将为人类社会带来更多的便利和价值。 总之,多模态融合是一个充满挑战和机遇的领域。
领取专属 10元无门槛券
手把手带您无忧上云