首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    京东商城技术架构部 | 我为11.11保驾护航

    京东快速发展的同时,应用规模、数据中心以及机器的规模都同步倍增,在面对如此大规模的机器,应运而生了京东数据中心操作系统(JDOS,JingdongDatacenter OS)。历经多年时间的技术沉淀与发展,JDOS不仅仅作为京东数据中心操作管理资源,更作为京东统一的PaaS平台致力于支撑业务系统快速交付、稳定运行,基础中间件托管提升基础平台敏捷交付。尤其是线上运行的阿基米德系列系统,将应用于实现京东商城数据中心资源智能调度,支撑在线业务系统与大数据计算混合部署融合计算,并节约采购成本。而每一次的11.11都是对JDOS系统的一次检验和挑战,经过无数次的紧张演练,问题排查,系统升级优化,服务应用快速交付;从容支撑大促高峰流量,保障了业务的高速发展。

    03

    监控视频用武之地 挖掘实时商业大数据

    零售商考虑视频监控,通常以损失预防和保障运维安全为背景。但监控视频在另外一个领域也能够提供巨大的价值:收集实时的店内情报信息,助力提高利润率。 假如您经营一家或多家零售商店,通过网络摄像机内置的各种分析功能,您不仅可以观察店内顾客的行为,而且还可以获得实时的统计数据,从而帮助您提升店面布局、商品布置和陈列,甚至发现店面的“瓶颈”和“死区”问题。与顾客调查、“神秘购物者”等随意性的方法不同,网络视频能够向您准确而公正地报告较长时间段的即时情况和变化情况。您可以清晰地了解顾客在各个购物通道的移动情况,并籍此

    04

    Flume+Kafka+Spark Streaming实现大数据实时流式数据采集

    大数据实时流式数据处理是大数据应用中最为常见的场景,与我们的生活也息息相关,以手机流量实时统计来说,它总是能够实时的统计出用户的使用的流量,在第一时间通知用户流量的使用情况,并且最为人性化的为用户提供各种优惠的方案,如果采用离线处理,那么等到用户流量超标了才通知用户,这样会使得用户体验满意度降低,这也是这几年大数据实时流处理的进步,淡然还有很多应用场景。因此Spark Streaming应用而生,不过对于实时我们应该准确理解,需要明白的一点是Spark Streaming不是真正的实时处理,更应该成为准实时,因为它有延迟,而真正的实时处理Storm更为适合,最为典型场景的是淘宝双十一大屏幕上盈利额度统计,在一般实时度要求不太严格的情况下,Spark Streaming+Flume+Kafka是大数据准实时数据采集的最为可靠并且也是最常用的方案,大数据实时流式数据采集的流程图如下所示:

    02
    领券