首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ACM MM 2021 | 人脸可胖可瘦,浙大提出稳定连续的视频人脸参数化编辑

    机器之心专栏 浙江大学计算机辅助设计与图形学国家重点实验室 来自浙江大学计算机辅助设计与图形学国家重点实验室的研究者,提出了一个鲁棒且易于实现的基于视频序列的人脸胖瘦参数化方法。即使在侧脸、长发、戴眼镜及轻微遮挡等极端情况下,该方法依旧能够取得连续稳定的结果。 短视频的流行催生了基于视频的人脸编辑需求。尽管基于图像的人脸编辑方法已经比较成熟,但直接将基于图像的编辑方法应用于人脸视频通常会产生不稳定、不连续的结果。 浙江大学计算机辅助设计与图形学国家重点实验室在人脸胖瘦参数化研究领域有着较为丰富的经验,他们曾

    01

    灯塔原创 | 《猩球崛起3》人猿终极一战,刷脸时代到来,你该如何面对这个科技社会

    导读:目前图像识别技术在很多专业的图像预测领域已经达到甚至超过人类的识别标准,人脸识别的技术目前已经相对成熟,一般对于面部的识别能达到很高的识别准确率。 9月15号上映的《猩球崛起3:终极之战》被网友评为最高级的好莱坞科幻大片,在影片中,主演安迪魔术般的由人演进为猩猩凯撒。这部史诗级别的电影以科幻为视角,以人猿“换脸”,展开最激烈的“战争”。在动作捕捉技术的帮助下,安迪演绎了这个不可能的角色,大量自然光照下的凯撒的面部特写,技术上,近乎100%的以假乱真的真实程度,动作捕捉技术,本质上就是一种数字技术的化

    06

    传统算法和深度学习的结合和实践,解读与优化 deepfake

    前一段时间用于人物换脸的deepfake火爆了朋友圈,早些时候Cycle GAN就可以轻松完成换脸任务,其实换脸是计算机视觉常见的领域,比如Cycle GAN ,3dmm,以及下文引用的论文均可以使用算法实现换脸(一定程度上能模仿表情),而不需要使用PS等软件手工换脸(表情僵硬,不符合视频上下文),只能说deepfake用一个博取眼球的角度切入了换脸算法,所以一开始我并没有太过关注这方面,以为是Cycle GAN干的,后来隐约觉得不对劲,因为GAN系列确实在image to image领域有着非凡的成绩,但GAN的训练是出了名的不稳定,而且收敛时间长,某些特定的数据集时不时需要有些trick,才能保证效果。但deepfake似乎可以无痛的在各个数据集里跑,深入阅读开源代码后(https://github.com/deepfakes/faceswap),发现这东西很多值得一说的地方和优化的空间才有了这一篇文章。 本文主要包括以下几方面:   1.解读deepfake的model和预处理与后处理的算法以引用论文。(目前大多文章只是介绍了其中的神经网络,然而这个项目并不是单纯的end-to-end的输出,所以本文还会涉及其他CV的算法以及deepfake的介绍)。   2.引入肤色检测算法,提升换脸的视觉效果。

    01

    AI换脸无法识别?这里有个方法

    现在,操纵视觉内容已经很普遍,也是数字社会中最重要的话题之一。比如,DeepFakes 展示了如何使用计算机图形学和视觉技术进行视频换脸,进而破坏别人的声誉。人脸是目前视觉内容操纵方法的主要兴趣点,这有很多原因。首先,人脸重建和追踪是计算机视觉中比较成熟的领域,而它正是这些编辑方法的基础。其次,人脸在人类沟通中起核心作用,因为人脸可以强调某个信息,甚至可以传达某个信息。目前的人脸操纵(facial manipulation)方法分为两类:面部表情操纵和面部身份操纵(见图 2)。最著名的面部表情操纵技术之一 Face2Face 来自于 Thies 等人 [48]。它可基于商用硬件,将一个人的面部表情实时迁移至另一个人。后续的研究(如《Synthesizing Obama: learning lip sync from audio》[45])能够基于音频输入序列使人脸动起来。《Bringing portraits to life》[8] 可以编辑图像中的面部表情。

    04

    中科院百人计划专家深度解析:银行业务光凭“刷脸”真的靠谱吗?

    雷锋网按:本文内容来自云从科技创始人、中国科学院百人计划周曦博士在硬创公开课的分享。在未改变原意的基础上进行了编辑整理。 明明可以靠脸吃饭”这句话不再只是一个网络段子,随着人脸识别技术的普及,不光可以靠“刷脸”支付吃喝玩乐的花费,现在连银行办业务都可以“刷脸”了。 最近两年,国内各家中小银行和四大行地方分行已经陆续将人脸识别技术用于日常业务,前几日,四大行中的农行更是首先在全国范围应用人脸识别技术。 但是,银行业务光凭“刷脸”真的靠谱吗?本期公开课特意邀请到云从科技创始人、图像识别领域权威周曦博士为大家答疑

    06

    处理表情识别中的坏数据:一篇CVPR 2020及两篇TIP的解读

    真实场景下的表情识别一直是令众多研究者十分头疼的课题。这个任务中,尤为令人抓狂的是表情数据集中普遍存在着许多坏的数据(例如被遮挡的人脸,错误的标签或者是模糊不清的图像)。这些数据不仅使得模型难以拟合,还严重拉低了最后的精度。在今年的 CVPR 中,我们惊喜的发现了一篇专门解决这个问题的论文,这篇论文有效的抑制了那些不确定性的数据,并且防止了深度模型对这些坏数据的过拟合。顺藤摸瓜,我们也找到了在 2019 年的 IEEE transactions on image processing 上两篇能有效处理遮挡表情和姿势变化的论文。本篇提前看重点关注 CVPR 2020 中的这篇「Suppressing Uncertainties for Large-Scale Facial Expression Recognition」, 但在解读它之前,我们先有步骤的解读两篇 TIP 作为它的基础,最后详细介绍它的算法和思想。对比性的解读这三篇论文,也许能对研究者们自己的工作有所启发。

    02

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券