opcache扩展的脚本加速、对象存储图片、动静分离成绩已然无法满足部分站长对速度的极致要求,难道没有更极致的速度么?答案是是有。...Redis,一个可以缓存网站内容的扩展,可以解决你国外服务器延迟的痛苦。 ps:文章内的步骤为宝塔用户步骤,部分非宝塔面板的用户可以参考并更换为自己的步骤。...//github.com/phpgao/TpCache 进入后台插件设置,将端口号修改为6379缓存驱动选择Redis 结束 至此,步骤就都完成了,此时只需尝试刷新缓存,访问自己的网站,即可体验到加速的效果...补充说明 使用Redis加速后容易出现诸如“错误被缓存、评论者信息被缓存、登录密码信息被缓存”等问题,请谨慎使用。
对于一个 100k 的页面来说,浏览器很可能在接收到 20k 数据的时候就开始渲染出一些可用内容了。 这个伟大又古老的特性,常常被开发者们有意无意地忽略了。...而服务端渲染版完全不会这样囤积内容,其内容是流式的,这样就要快得多了。就 Github 的客户端渲染来说,很多 JavaScript 代码完全减慢了渲染过程。...在页面之内切换内容可能确实有些好处,特别是存在大量脚本的情况下,无需重新执行全部脚本即可更新内容。但我们能否在不放弃流的情况下完成这样的工作呢?...但下面这个办法就使用了 iframe 和 document.write(),这样我们就能将内容以流的形式添加到页面中了。...给上面的内容写一个解析器就要简单多了。
在推荐系统领域,内容推荐是一种常用的方法,它根据用户的历史行为数据或偏好信息,分析用户对内容的喜好,然后推荐与用户喜好相似的其他内容。...本文将详细介绍内容推荐的原理、实现方式以及如何在Python中应用。 什么是内容推荐?...内容推荐是一种基于内容相似度的推荐方法,它通过分析内容的属性、特征或标签等信息,找到与用户感兴趣的内容相似的其他内容,并推荐给用户。...推荐生成:根据内容的相似度,找到与用户感兴趣的内容相似的其他内容,并将其推荐给用户。...: print(documents[index]) 结论 内容推荐是一种基于内容相似度的推荐方法,通过分析内容的特征和相似度,找到与用户感兴趣的内容相似的其他内容,并推荐给用户。
推荐系统本质上要拟合一个用户对内容满意度的函数[1],函数需要多个维度的特征包括:内容、用户等作为输入。个性化推荐建立在大量、有效的数据基础上。...本文将从描述“热度”的视角介绍几种内容推荐策略,完成可解释性的推荐。...过度的推荐让用户停留在“信息茧房”[6]中,但我们还有另一个角度来实现推荐策略。即不考虑用户侧的隐私数据,按照对内容的评分无偏差的对用户进行展示,也就是本文即将描述的基于“热度”的可解释性推荐。...正文 正文部分将会展示一组描述内容“热度”的推荐策略,重点讨论用户反馈、时间衰减对热度分的影响,以上策略可应用在需要无差别曝光的内容推荐场景中。...概括的讲,包含以下三个概念: 初始的热度分:内容入库时,利用对内容本身、内容的生产者的初步评估,可以得到内容初始的热度分。
基本概念 基于内容的过滤算法会推荐与用户最喜欢的物品类似的物品。但是,与协同过滤算法不同,这种算法是根据内容(比如标题、年份、描述),而不是人们使用物品的方式来总结其类似程度的。...在基于内容的协同过滤算法中,要做的第一件事是根据内容,计算出书籍之间的相似度。在本例中,使用了书籍标题中的关键字(图二),这只是为了简化而已。在实际中还可以使用更多的属性。 ?...区别在于:相似度是基于书籍内容的,准确来说是标题,而不是根据使用数据。在本例中,系统会给第一个用户推荐第六本书,之后是第四本书(图六)。同样地,只选取与用户之前评论过的书籍最相似的两本书。 ?...优缺点分析 1、优点 (1)不需要惯用数据 (2)可以为具有特殊兴趣爱好的用户推荐罕见特性的项目 (3)可以使用用户内容特征提供推荐解释,信服度较高 (4)不需要巨大的用户群体或者评分记录,只有一个用户也可以产生推荐列表...(5)没有流行度偏见,能推荐新的或者不是很流行的项目,没有新项目问题 2、缺点 (1)项目内容必须是机器可读和有意义的 (2)容易归档用户 (3)很难有意外,存在推荐结果新颖性问题,相似度太高,惊喜度不够
、基于内容的推荐、基于用户的协同过滤推荐、基于项目的协同过滤推荐、基于模型的协同过滤推荐、基于关联规则的推荐 FM: LR: 逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层逻辑函数g(z...但我们往往忽略了这种情况只适应于提供商品的电子商务网站,对于新闻,博客或者微内容的推荐系统,情况往往是相反的,物品的数量是海量的,同时也是更新频繁的,所以单从复杂度的角度,这两个算法在不同的系统中各有优势...适用场景: 在非社交网络的网站中,内容内在的联系是很重要的推荐原则,它比基于相似用户的推荐原则更加有效。...启动物品集合需要有多样性,在冷启动时,我们不知道用户的兴趣,而用户兴趣的可能性非常多,为了匹配多样的兴趣,我们需要提供具有很高覆盖率的启动物品集合,这些物品能覆盖几乎所有主流的用户兴趣 4)利用物品的内容信息...5)采用专家标注 很多系统在建立的时候,既没有用户的行为数据,也没有充足的物品内容信息来计算物品相似度。这种情况下,很多系统都利用专家进行标注。
内容推荐位列表(position): {pc:content action="position" posid="2" order="id DESC" num="5"} {loop $data $key...$val} {$val['title']} {/loop} {/pc} 当前分类文章推荐 {pc:content action="position
作者:章华燕 编辑:田 旭 前言 在第一篇文章《推荐算法综述》中我们说到,真正的推荐系统往往是多个推荐算法策略的组合使用,本文介绍的将会是推荐系统最古老的算法:基于内容的推荐算法(Content-Based...随着今日头条的崛起,基于内容的文本推荐就盛行起来。在这种应用中一个item就是一篇文章。 第一步,我们首先要从文章内容中抽取出代表它们的属性。...比如在交友网站上,item就是人,一个item会有结构化属性如身高、学历、籍贯等,也会有非结构化属性(如item自己写的交友宣言,博客内容等等)。...基于内容推荐的优缺点 下面说说基于内容推荐算法的优缺点。...如果一个人以前只看与推荐有关的文章,那CB只会给他推荐更多与推荐相关的文章,它不会知道用户可能还喜欢数码。
腾讯内容加速平台(CAP),通过将腾讯内容部署在CAP平台,腾讯的优质内容可以直接提供给中小运营商宽带用户。 ...——腾讯内容加速平台(CAP),通过将腾讯内容部署在CAP平台,并接受中小运营商与腾讯CAP平台网络直联,将腾讯的优质内容直接提供给中小运营商宽带用户。...腾讯内容加速平台(Content Acceleration Platform,简称CAP平台)顾名思义就是可以加速业务的平台,但究竟如何加速,这个平台是怎样的?...腾讯的内容加速平台正是在这种背景下应运而生,它尝试建立一套网络平台,尽可能利用BGP的优势,让一组业务服务器共享服务所有的非主流运营商,将服务器资源复用,同时简化中小运营商的接入路径。...讲到这里相信大家应该已经清楚腾讯CAP平台的内容加速是如何实现并达到怎样的效果了吧,如果您来自非主流运营商,具有同样访问腾讯业务体验差的苦恼,并且符合接入条件,那就尽快接入腾讯CAP平台吧。
基于协同过滤的推荐系统通过分析用户之间的相似性,推荐相似用户喜欢的内容;而基于内容的推荐系统则通过分析内容本身的特征,推荐与用户历史行为相似的内容。...内容推荐 内容推荐系统通过分析内容的特征和用户的历史行为,推荐相似内容给用户。其基本原理如下: 特征提取:从内容中提取出能代表其特征的向量,例如,文本内容可以使用TF-IDF、词嵌入等方法提取特征。...相似度计算:通过计算内容特征向量和用户特征向量之间的相似度,推荐相似内容给用户。 混合推荐 混合推荐系统通过结合协同过滤与内容推荐,生成更为精准和多样化的推荐结果。...结合协同过滤和内容推荐结果,生成最终推荐。...通过计算用户之间的相似度,推荐相似用户喜欢的内容。 混合推荐:结合内容推荐和协同过滤的结果,生成最终推荐。具体步骤包括计算用户特征向量、内容推荐相似度计算、协同过滤推荐结果获取和推荐结果融合。
适用场景1:呼叫中心语音质检 数据万象语音识别服务支持对电话场景下的录音文件进行识别,通过对通话双方语音内容进行分离,可实现客服服务评级打分,提升电话客服服务质量。...适用场景3:会议语音资料转写 大型会议记录工作内容繁杂,若会议时长较长、参会人员较多,则更加难以完整记录。...视频标签 视频标签通过对视频中视觉、场景、行为、物体等信息进行分析,结合多模态信息融合及对齐技术,实现高准确率内容识别,自动输出视频的多维度内容标签。...可应用于视频智能分析、视频审核、视频搜索、视频个性化推荐等场景,助力视频智能生产。 适用场景1:短视频分类 在短视频平台、电商、社交应用等场景下,我们都可以看到精准匹配用户需求的标签推送。...适用场景2:热点推荐 适用于视频平台、电商平台中识别热点明星、商品、情景出现时间,标记后进行推荐。 如果您想了解上述AI能力的接入指引等更多信息,请点击[阅读原文],查阅官网文档。
推荐阅读时间:9min~11min 文章内容:基于内容的推荐系统 推荐系统起步阶段一般都会选用内容推荐,并且会持续存在。 ? 为什么要做内容推荐 内容推荐非常重要,并且有不可替代的作用。...内容推荐有以下优势: 从内容数据中可以深入挖掘很多信息量 新物品想要快速被推出,首选内容推荐 可解释性好 内容推荐流程 基于内容的推荐,最重要的不是推荐算法,而是内容分析。...内容推荐算法 基于内容的推荐系统,最简单的当属计算用户与物品之间的相似度了。具体来说,物品画像有对应的稀疏向量,用户画像也有对应的稀疏向量,两者之间计算余弦相似度,之后按照相似度结果对物品进行排序。...总结 总结一下,基于内容的推荐有一些天生的优势,也是非常重要的,基于内容推荐时,需要两类数据:物品画像,用户画像。...基于内容来构建推荐系统可以采用的算法有简单地相似度计算,也可以使用机器学习构建监督学习模型。
我最常听到的答案是推荐系统。现在,在硅谷有很多团体试图建立很好的推荐系统。因此,如果你考虑网站像亚马逊,或网飞公司或易趣,或 iTunes Genius,有很多的网站或系统试图推荐新产品给用户。...如,亚马逊推荐新书给你,网飞公司试图推荐新电影给你,等等。这些推荐系统,根据浏览你过去买过什么书,或过去评价过什么电影来判断。这些系统会带来很大一部分收入,比如为亚马逊和像网飞这样的公司。...因此,对推荐系统性能的改善,将对这些企业的有实质性和直接的影响。...推荐系统是个有趣的问题,在学术机器学习中因此,我们可以去参加一个学术机器学习会议,推荐系统问题实际上受到很少的关注,或者,至少在学术界它占了很小的份额。...代表电影的数量 如果用户 i 给电影 j 评过分则 r(i,j)=1 )代表用户 i 给电影 j 的评分(只在 r(i,j)=1 时被定义) 代表用户 j 评过分的电影的总数 ---- 16.2 基于内容的推荐系统
内容推荐中的“冷启动”问题 推荐引擎通常非常善于将内容推荐给已经在平台存在一段时间的用户,因为它已经获得了这些用户的大量信息。 但是,如果一个用户第一次注册平台呢?即平台新用户。...平台没有任何关于用户、用户偏好等信息,所以很难立即就推荐内容。 这种情况被称为推荐引擎中的“冷启动问题”。如何向一个你对其一无所知的用户推荐?又推荐什么内容?...视频内容推荐引擎的应用场景 推荐引擎对于视频平台的成功至关重要,并且有助于提升内容发现、用户互动、营销活动、再营销“休眠”用户、减少用户流失等。...这就是“内容发现”过程,通过了解用户画像,内容平台可以向用户推荐电影并引导用户发现更多内容库(目录)。 Amazon Prime Video就是一个很好的例子。...如果是更加智能和有品位的内容推荐,将能够帮助你的用户探索和参与到分类中的大部分内容。
您可以单击具体的应用场景,查看更详细的内容: 应用场景 场景概述 网站加速 针对门户网站、电商、UGC 社区等业务场景,提供强大的静态内容(如各类型网页样式、图片、小文件)加速分发处理能力,显著提升网页用户的体验...网站加速 网站加速适用于各类网站的加速,如门户网站、电商网站、UGC 社区等。腾讯云 CDN 可对站点内容中的静态内容进行缓存加速,对动态内容需使用 腾讯云全站加速 ECDN。...image.png 安全加速 安全加速适用于动静态内容加速和安全防护一体化的场景。...尤其适用于那些既需要内容加速分发,又对安全防护有较高要求的行业,如游戏行业、互联网金融、电子商务网站、政务机构门户网站等。...腾讯云安全加速 SCDN 建立在 CDN 内容加速的基础上,无需用户再进行多重 DNS 配置。已使用腾讯云加速服务的域名,可由 CDN 一键接入开启安全防护。
最近业务有需求:结合RAG+内容推荐,针对实践部分,做一点探究。 话不多说,直接开冲! 背景 首先回顾一下 RAG 技术定义,它可以结合信息检索和生成模型的混合。...基于这样的背景,这种技术在内容推荐、问答系统和自动摘要等领域有着广泛的应用,它能克服纯生成模型对训练数据依赖过大的缺点。 本文将介绍RAG的基本原理,并结合内容推荐机制进行实践演示,包括代码示例。...在内容推荐中,RAG 可以通过 结合用户历史行为和外部文档生成个性化的推荐内容。 例如,可以根据用户的阅读历史检索相关文档,并生成推荐理由或简介,从而提高推荐系统的智能性和用户体验。...num_return_sequences=1) return tokenizer.decode(outputs[0], skip_special_tokens=True) # 结合检索文档生成推荐内容...展望 RAG ,它使得内容更准确、丰富,能够通过精准推荐,获取用户信任感,也适用于多场景,可能需要提升的点在于如何提升检索模型的效率、在复杂模型下,如何确保生成模型的稳定,以及多模态融合等等。。。
高速方法 第8式,在循环体中避免重复计算 低速方法 高速方法 四,加速你的函数 第9式,用循环机制代替递归函数 低速方法 高速方法 第10式,用缓存机制加速递归函数 低速方法 高速方法 第11式,...用numba加速Python函数 低速方法 高速方法 五,使用标准库函数进行加速 第12式,使用collections.Counter加速计数 低速方法 高速方法 第13式,使用collections.ChainMap...加速字典合并 低速方法 高速方法 六,使用高阶函数进行加速 第14式,使用map代替推导式进行加速 低速方法 高速方法 第15式,使用filter代替推导式进行加速 低速方法 高速方法 七,使用numpy...Dask进行加速 第21式,使用dask加速dataframe 低速方法 高速方法 第22式,使用dask.delayed进行加速 低速方法 高速方法 十,应用多线程多进程加速 第23式,应用多线程加速...IO密集型任务 低速方法 高速方法 第24式,应用多进程加速CPU密集型任务 低速方法 高速方法
导读 本文是推荐学Java 系列第四篇,通过前三篇内容已经搞定了 JavaSE 的内容,接下来是真正进入Java后端开发的视界。先来了解基本学习路线,可能你会有这样的疑问:前端的内容到底该不该学?...工具的介绍这里就省略了,下载和环境配置可以去看 推荐学Java 第一篇文章。...下面是关于 Servlet 的内容,这块内容的学习要在Java开发中进行,会结合前端的内容进行,所以前面小编将其列入需要学习的前端范畴中了。...Web项目 Tomcat环境配置 官网下载地址:http://tomcat.apache.org/ [Tomcat环境配置] 相对于我们在学习JavaSE 时配置jdk简单些,参照导图完全可以搞定,推荐大家下载解压即用版本...小编特意创建了一个公众号:推荐学java,会分享与java相关的内容,并且以原创为主,欢迎大家搜索关注(关注即送小编挑选的精品视频教程),一起学Java!
推荐系统在当今的信息爆炸时代显得尤为重要,它帮助用户在海量信息中找到最感兴趣的内容。推荐系统主要分为两类:协同过滤推荐和基于内容的推荐。...基于内容的推荐系统(Content-based Recommendation System)是一种广泛应用的推荐技术,它通过分析内容的特征和用户的历史行为,推荐相似内容给用户。...音乐平台:根据用户的听歌历史,推荐相似的歌曲或艺术家。 基于内容的推荐系统原理 基于内容的推荐系统通过分析内容的特征和用户的历史行为,推荐相似内容给用户。其基本原理如下: A....过滤已浏览内容:为了避免推荐用户已浏览过的内容,需要对推荐结果进行过滤,剔除用户已浏览或点击过的内容。...推荐生成的目的是根据相似度计算结果,选取最符合用户兴趣的内容,提升推荐系统的精准度和用户体验。 基于内容的推荐系统实现 数据准备 为了演示基于内容的推荐系统的实现,我们将使用一个简化的新闻推荐数据集。
这些开源内容管理系统为开发者和用户提供了多样化的选择,满足了不同需求下的网站开发和管理。这些项目均以开发者为中心,拥有现代化的管理面板、丰富的功能和极速响应能力。...插件导向:在几秒钟内安装身份验证系统、内容管理系统 (CMS)、自定义插件等等。 极速响应能力:基于 Node.js 构建,具备出色性能表现。...丰富文档支持:Ghost 提供详尽的官方文档,包括推荐主机环境配置与升级指南,还有自定义主题开发与 API 使用教程。...它为用户提供了一种简单的方式来编辑和添加内容到任何使用静态网站生成器构建的网站。...多功能支持:通过登录认证后,在 /admin/ 页面上,用户可以创建新内容或者对现有内容进行修改。 快速安装与配置:Decap CMS 支持两种不同方式进行安装。
领取专属 10元无门槛券
手把手带您无忧上云