首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何选购合适的工业机器人?

选购合适的工业机器人,至少要考虑以下几个方面: 工业机器人应用 首先要知道的是你的机器人要用于何处。这是你选择需要购买的机器人种类时的首要条件。...如果你只是要一个紧凑的拾取和放置机器人,Scara机器人是不错的选择。如果想快速放置小型物品,Delta机器人是最好的选择。如果你想机器人在工人旁边一起工作,你就应该选择协作机器人。...机器人负载 负载是指机器人在工作时能够承受的最大载重。如果你需要将零件从一台机器处搬至另外一处,你就需要将零件的重量和机器人抓手的重量计算在负载内。...最大垂直运动范围是指机器人腕部能够到达的最低点(通常低于机器人的基座)与最高点之间的范围。最大水平运动范围是指机器人腕部能水平到达的最远点与机器人基座中心线的距离。...规格表上通常只是给出最大速度,机器人能提供的速度介于0和最大速度之间。其单位通常为度/秒。一些机器人制造商还给出了最大加速度。 机器人重量 机器人重量对于设计机器人单元也是一个重要的参数。

4.3K60

机器学习工具综述

为什么要使用工具 机器学习工具使得应用机器学习更快,更简单,更有趣。 更快:好工具可以自动化应用机器学习过程中的每一步。这意味着,从提出创意到得到结果的时间大大缩短。...如果不使用这些工具,你将会花费大部分时间来构建你自己的工具,而没将时间集中在获取结果上。 有目的地选择工具 你不希望为学习、使用机器学习工具学习、使用机器学习工具。必须有目的地使用工具。...机器学习工具可以让你在机器学习项目中交付结果。当你试图决定是否要学习工具或是新功能的时候,问自己这么一个问题: 这些工具如何帮助我在机器学习项目中交付结果?...那么如何区分好的机器学习工具与强大机器学习工具之间的区别呢? 直观的界面:强大的机器学习工具在应用机器学习过程的子任务上提供直观的界面。在任务的界面中有良好的映射以及适应性。...参考文章: 25个Java机器学习工具&库 最好的Python机器学习库 本地机器学习工具 VS 远程机器学习工具 比较机器学习工具最后一个方法是这个工具是本地工具还是远程工具

1.2K100
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    机器学习工具总览

    丰富的机器学习工具 当谈到训练计算机在没有明确编程的情况下采取行动时,存在大量来自机器学习领域的工具。学术界和行业专业人士使用这些工具在MRI扫描中构建从语音识别到癌症检测的多种应用。...机器学习工具总览 我已经将两个机器学习子领域Deep和Shallow Learning区分开来,这已成为过去几年中的一个重要分支。...浅层学习方法仍然广泛应用于自然语言处理,脑计算机接口和信息检索等领域。 机器学习包和库的详细比较 此表还包含有关使用GPU的特定工具支持的信息。...GPU接口已经成为机器学习工具的一个重要特性,因为它可以加速大规模矩阵运算。这对深度学习方法的重要性是显而易见的。...最后,附上一些关于学术界和工业界对这些工具的不同使用的补充说明。通过搜索机器学习出版物,演示文稿和分布式代码收集了哪些信息。

    1K20

    机器学习:算法及工具

    算法及工具 说明 编程语言:Python 机器环境:Windows 参考书籍:《Python机器学习实践指南》《机器学习实战》 为什么使用Python 1.Python具有清晰的语法结构,简单易上手。...人工智能、数据挖掘、机器学习、深度学习 人工智能(Artifical Intelligence, AI)是计算机科学的一个子领域,创造于 20 世纪 60 年代,它涉及到解决对人类而言简单却对计算机很难的任务...),即通过程序积累经验,但机器学习是另一门学科,并不从属于数据挖掘,二者相辅相成; 深度学习(Deep Learning)是机器学习的一个子集,就是用复杂、庞大的神经网络进行机器学习。...机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。...3.把复杂的概念通俗化,不要架空算法 下期 机器学习(一):机器学习基础 机器学习系列: 家明将与大家一起学习机器学习,借助于网上的教程与书籍指导,家明总结,与大家一起进步,共同应对AI时代。

    1.1K60

    开发 | 除了性价比排名,如何选购深度学习 GPU

    AI科技评论按:与“传统” AI 算法相比,深度学习(DL)的计算性能要求,可以说完全在另一个量级上。而 GPU 的选择,会在根本上决定你的深度学习体验。...没有快速的反馈,从错误中学习要花费太高的时间成本,学习深度学习便很可能变成一个令人反胃、进而望而生畏的经历。 是否需要多卡?...但这个配置适合深度学习吗? 从那时起,对 GPU 并行的支持越来越常见,但离普及还差得远,更不要提高效地运行。到目前为止,唯一一个能在多卡、多机环境实现高效算法的深度学习框架,是 CNTK。...另外,对于深度学习,即便这项技术及其产业尚在襁褓之中,英伟达可谓是全面出击。老黄的投入并没有白费。那些现在才投入资金、精力,想要赶上深度学习风口的公司,由于起步晚,离英伟达的距离有老大一截。...AI科技评论提醒,我自己并没有所有这些显卡,我也并没有在每张显卡上做深度学习跑分评测。这些性能对比,是从显卡参数以及计算评测(与深度学习同一级别的计算任务,比如密码挖掘)中获得。

    6.7K60

    Python机器学习工具

    Python机器学习库非常多,而且大多数开源,主要有: 1. scikit-learn scikit-learn 是一个基于SciPy和Numpy的开源机器学习模块,包括分类、回归、聚类系列算法,主要算法有...Shogun Shogun是一个开源的大规模机器学习工具箱。...,它的目标是为机器学习任务提供灵活、易应、强大的机器学习算法。...PyML PyML是一个Python机器学习工具包, 为各分类和回归方法提供灵活的架构。它主要提供特征选择、模型选择、组合分类器、分类评估等功能。...Milk Milk是Python的一个机器学习工具箱,其重点是提供监督分类法与几种有效的分类分析:SVMs(基于libsvm),K-NN,随机森林经济和决策树。它还可以进行特征选择。

    3.4K140

    机器学习和深度学习网络绘图工具

    之前见好多学长学姐做分享的时候,PPT上有很多比较好看的模型图,我在网上看到许多绘图工具。今天在网上找见了个我想要的绘图工具,这个画图模板需要科学上网才能进行访问。...NN-SVG 这个工具可以非常方便的画出各种类型的图。以平铺网络结构展示,用二维的方式,适合查看每一层featuremap的大小和通道数目。...有FCNN style、LeNet style、AlexNet style三种模型,下面是链接:http://alexlenail.me/NN-SVG/ 绘图工具还有很多,如:PlotNeutralNet...还有一个是我这次推荐的,这是下面是使用这个工具的一些模型图,看着确实挺高大上的。 爱斯达克国家圣诞节宫颈卡卡卡坎坎坷坷呃呃呃呃呃哦哦哦哦哦啊啊啊啊啊 公众号回复“绘图”可以获取下载地址。

    1.3K20

    了解机器学习深度学习常用的框架、工具

    scikit-learn 的优点和不足 优点: 易于学习和使用:scikit-learn 的 API 设计简单,容易上手。 丰富的算法和工具:提供了大量的经典机器学习算法和工具。...随着社区的成长和生态系统的完善,JAX 有潜力成为机器学习领域中更加重要的工具之一。...它是一个端到端的机器学习和模型管理工具,可以指数级加速实验周期并提高生产效率。与其他开源机器学习库相比,PyCaret 是一种替代的低代码库,能够用少量代码执行复杂的机器学习任务。...总体而言,TFLite 是一个强大且灵活的工具,适合于需要在移动或嵌入式设备上部署机器学习模型的场景。...陈天奇对于推动机器学习工具和框架的发展做出了巨大贡献,包括但不限于他在 XGBoost 项目上的工作。

    1.4K01

    机器学习工具:Python 和 Numpy入门

    如今,随着人工智能时代的到来,Python迅速成为了机器学习,深度学习的必备语言,流行的机器学习库,sklearn,完全是基于Python开发的API,深度学习库tensorflow也是对Python的支持最好...这样看来,作为开发者的我们除了要学习机器学习,深度学习的一些理论和算法的同时,还得去学各种语言,真的看起来很辛苦,有时候好不容易学会一门语言后,它已经又被新的语言迭代掉了。...这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。...包括: 一个强大的N维数组对象Array; 比较成熟的(广播)函数库; 用于整合C/C++和Fortran代码的工具包; 实用的线性代数、傅里叶变换和随机数生成函数。...linalg' import numpy.linalg as la '求逆矩阵' x2inv = la.inv(x2) 及其他... ---- 交流思想,注重分析,看重过程,包含但不限于:经典算法,机器学习

    1.2K130

    25个Java机器学习工具

    本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法。这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用。...它包括一系列的机器学习算法(分类、回归、聚类、异常检测、概念漂移检测和推荐系统)和评估工具。关联了WEKA项目,MOA也是用Java编写的,其扩展性更强。...此外,MEKA基于WEKA的机器学习工具包。 4....Mallet是一个基于Java的面向文本文件的机器学习工具包。Mallet支持分类算法,如最大熵、朴素贝叶斯和决策树分类。 7....Stanford Classifier是一个机器学习工具,它可以将数据项归置到一个类别。一个概率分类器,比如这个,它可以对一个数据项给出类分配的概率分布。该软件是最大熵分类器的一个Java实现。

    1.7K60

    【人工智能】机器学习工具总览

    丰富的机器学习工具 当谈到训练计算机在没有明确编程的情况下采取行动时,存在大量来自机器学习领域的工具。学术界和行业专业人士使用这些工具在MRI扫描中构建从语音识别到癌症检测的多种应用。...机器学习工具总览 我已经将两个机器学习子领域Deep和Shallow Learning区分开来,这已成为过去几年中的一个重要分支。...浅层学习方法仍然广泛应用于自然语言处理,脑计算机接口和信息检索等领域。 机器学习包和库的详细比较 此表还包含有关使用GPU的特定工具支持的信息。...GPU接口已经成为机器学习工具的一个重要特性,因为它可以加速大规模矩阵运算。这对深度学习方法的重要性是显而易见的。...最后,附上一些关于学术界和工业界对这些工具的不同使用的补充说明。通过搜索机器学习出版物,演示文稿和分布式代码收集了哪些信息。

    1.1K40

    combo:机器学习模型合并工具

    机器学习中的模型合并(model combination)可以通过合并多个模型达到提升性能与稳定性的目的。...在绝大部分的机器学习/数据挖掘竞赛中(比如Kaggle),最终获胜的方案都是多个模型的合成体。...除此之外,模型合并也常被用于减少数据和模型中的随机性,提高模型的稳定性,详情可以参考:「大部分机器学习算法具有随机性,只需多次实验求平均值即可吗?」...为了方便大家对机器学习模型进行合并,我最近开发了一个新的Python工具库「combo」,起这个名字是因为combo代表“点套餐” ,与我们的目的不谋而合 :) combo有以下特点: 包括多种合并方法...Research (JMLR)上,以吸引更多的用户关注 :) 总结来看,combo或许会成为一款流行的机器学习模型合并工具库。

    1.9K20

    25个Java机器学习工具&库

    本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法。这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用。...它包括一系列的机器学习算法(分类、回归、聚类、异常检测、概念漂移检测和推荐系统)和评估工具。关联了WEKA项目,MOA也是用Java编写的,其扩展性更强。...此外,MEKA基于WEKA的机器学习工具包。 4....Mallet是一个基于Java的面向文本文件的机器学习工具包。Mallet支持分类算法,如最大熵、朴素贝叶斯和决策树分类。 7....Stanford Classifier是一个机器学习工具,它可以将数据项归置到一个类别。一个概率分类器,比如这个,它可以对一个数据项给出类分配的概率分布。该软件是最大熵分类器的一个Java实现。

    1.6K80

    25个Java机器学习工具&库

    本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法。这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用。...它包括一系列的机器学习算法(分类、回归、聚类、异常检测、概念漂移检测和推荐系统)和评估工具。关联了WEKA项目,MOA也是用Java编写的,其扩展性更强。...此外,MEKA基于WEKA的机器学习工具包。 4....Mallet是一个基于Java的面向文本文件的机器学习工具包。Mallet支持分类算法,如最大熵、朴素贝叶斯和决策树分类。 7....Stanford Classifier是一个机器学习工具,它可以将数据项归置到一个类别。一个概率分类器,比如这个,它可以对一个数据项给出类分配的概率分布。该软件是最大熵分类器的一个Java实现。

    1.5K80

    使用“假设工具”来研究机器学习模型

    What-If Tool 是一个交互式可视化工具用于研究机器学习模型(WIT)。他通过辅助检查、评估和对比学习模型来帮助我们理解分类或回归问题。...这个系统工具可以通过TensorBoard、Juypter拓展接口或Colab接入。 优点 这个工具的目的是提供一种简单、直观、强有力的可视化接口去与训练机器学习模型和数据交互。...毕竟,模型从提供的数据中学习,如果数据源是倾斜的,那么结果就是如此。机器学习已经在很多应用和领域得到了证明。...然而,机器学习模型的工业应用的关键障碍之一是确定用于训练模型的原始输入数据是否包含歧视性偏差。 结论 这只是一些假设工具功能的快速浏览。...WIT是一个非常方便的工具,它能够探测模型,掌握最重要的人的手中。简单地创建和训练模型不是机器学习的目的,但理解模型的原因和方式才是真正意义上的机器学习

    1K20

    机器学习需要掌握的九种工具

    来自剑桥大学的计算机科学博士生 Aliaksei Mikhailiuk 为我们整理了机器学习博士在获得学位之前需要掌握的九种工具。他在剑桥大学获得物理学硕士学位,在布里斯托大学获得工程学士学位。...一、可隔离环境工具 机器学习是一个快速发展的领域,常用的包更新非常频繁。尽管开发人员做出了努力,但较新的版本通常与旧版本不兼容,这样给研究者带来很多麻烦。幸运的是,有工具可以解决这个问题!...MLFlow MLFlow 是一个能够覆盖机器学习全流程(从数据准备到模型训练到最终部署)的新平台,它是一款管理机器学习工作流程的工具,主要有三个功能模块:Tracking 跟踪和记录、Project...然而,机器学习的发展速度需要大家共同努力。Mikhailiuk 推荐了两个非常基本的工具:GitHub 以及 Lucidchart,它们对于有效的沟通非常方便,尤其是在远程工作上。 6....教程地址:https://builtin.com/machine-learning/streamlit-tutorial 以上就是 Mikhailiuk 在获得机器学习博士学位之前需要掌握的九个工具,你不妨也学习一下

    1.5K30

    Python机器学习工具&库,再也不怕找不到工具

    用Python搞机器学习、数据科学,需要很多相关的资料,各种库、工具,都是常用、常找、常查的内容。...最近,维也纳的数据科学家Florian Rohrer把这类相关资料整理成了一个Python机器学习工具合辑,可以照着更新一下自己的收藏夹了。...四十几类项目 整个列表中,包含超过40类内容: 核心工具、Pandas和Jupyter、文本提取、大数据、统计、特征提取、可视化、地理工具、推荐系统、决策树、NLP、CV、神经网络、GPU、聚类、机器学习可解释性...、强化学习…… 具体都有什么呢?...再比如说可视化部分: 包括可以生成3D效果图的physt: 做各种统计图表的Yellowbrick: Python机器学习工具&库,分门别类排列好,再也不怕找不到工具了 这哪怕是做PPT

    76500

    Python最有用的机器学习工具和库

    它同样适用于机器学习也是意料之中的事。 ? 当然,它也有些缺点;其中一个是工具和库过于分散。...这篇文章的目的就是列举并描述Python可用的最有用的机器学习工具和库。这个列表中,我们不要求这些库是用Python写的,只要有Python接口就够了。...另外,尽管有些模块可以用于多种机器学习任务,我们只列出主要焦点在机器学习的库。比如,虽然Scipy包含一些聚类算法,但是它的主焦点不是机器学习而是全面的科学计算工具集。...Scikit-Learn Scikit Learn是我们在CB Insights选用的机器学习工具。我们用它进行分类、特征选择、特征提取和聚集。...Shogun Shogun是个聚焦在支持向量机(Support Vector Machines, SVM)上的机器学习工具箱,用C++编写。

    1K50
    领券