618的预热已经结束,电商平台的终端优惠价格基本都已经出来了,下一波就是6月16-18号的优惠期。
Facebook人工智能研究部门(FAIR)的负责人Yann LeCun宣布卸任,之后将担任Facebook首席人工智能科学家,保留对FAIR的研究方向的控制。同时,原工作将由新任负责人Jérôme Pesenti 接替,Facebook应用机器学习小组(AML)和Yann LeCun将同时向其汇报。而Jérôme Pesenti 将直接向Facebook CTO汇报。
2016年初,京东在印尼正式落地了第一个海外本土站点;今年11.11,京东印尼站当天单量同比增长845%,连续三年保持超高速增长。
2014年年底,NVIDIA 再为加速运算平台增添最新旗舰级产品,宣布推出全新 Tesla K80 双 GPU 加速器,专为机器学习、资料分析、科学和高效能运算 (HPC) 等广泛应用而设,提供多 2 倍效能和存储器频宽。 全新 Tesla K80 双 GPU 加速器是 Tesla 加速运算系列的旗舰级产品,特别针对大型科学探索和深入分析的顶尖运算平台,结合最快的 GPU 加速器、 CUDA 平行运算以及完整的软件开发者、软件商和资料中心系统 OEM 的产业体系支援。 效能方面, Tesla K8
机器学习定义 机器学习(Machine Learning)本质上就是让计算机自己在数据中学习规律,并根据所得到的规律对未来数据进行预测。 机器学习包括如聚类、分类、决策树、贝叶斯、神经网络、深度学习(Deep Learning)等算法。 机器学习的基本思路是模仿人类学习行为的过程,如我们在现实中的新问题一般是通过经验归纳,总结规律,从而预测未来的过程。机器学习的基本过程如下: 机器学习基本过程 机器学习发展历程 从机器学习发展的过程上来说,其发展的时间轴如下所示: 机器学习发展历程 从上世纪50年代的图
今天和大家聊聊并发。 虽然搞了多年 Java,可许多朋友一提到“并发”就头疼: 为什么我已经学习了很多相关技术,可还是搞不定并发编程? 小公司根本遇不到并发问题,高并发经验该怎么积累?平时该怎么学习? 昨天面试又卡在并发问题上了,并发编程难道已经成为大厂必备的敲门砖了吗? 有这些困惑很正常,因为并发编程是 Java 语言中最为晦涩的知识点,它涉及操作系统、内存、CPU、编程语言等多方面的基础能力,而这些知识点看上去非常的零散、独立,可实则关联性又比较强,更为考验一个程序员的内功。 并发编程的优势是
最近由于校招如火如荼,一些小伙伴在后台以及知乎上问我,在开发和算法之间犹豫,不知道如何抉择,想要问问究竟哪一个岗位更好?
11 月 3 日,阿里达摩院联手中国计算机学会(CCF)开源发展委员会推出AI 模型社区魔搭ModelScope,首批合作方包括澜舟科技、智谱AI、深势科技、中国科学技术大学等多家科研机构,旨在打造下一代开源的模型即服务共享平台,致力降低 AI 应用门槛。
去年7月参加了一场关于元宇宙和机器学习的沙龙,主要听了Amazon 云科技的一位老师关于游戏和ML落地实践案例的分享。
腾讯云电商行业资深架构师唐良以电商行业的发展为例,讲述了云端架构升级为企业开发与业务创新带来的全新价值。唐良表示,腾讯云帮助电商企业从自建的IDC数据中心一步步成功迁移到云端,从最开始的弹性上云、到数据库上云,到数据同步,再到混合云。继而当电商客户越做越大后,该企业也将自己的大数据平台建立在腾讯云的黑石服务器上,实现了高性能计算,从海量数据分析中获取洞察。同时腾讯云的GPU服务器为该企业提供了机器学习的能力。此外,腾讯云的云监控服务保证了系统的可用性与稳定性。数据表明,该企业的最后支付体系,由于放在腾讯云上
近日,工信部指导下的数据中心联盟公布第五批大数据产品评测结果,通过评测的产品包括16家大数据供应商的17款大数据产品,覆盖一线云厂商和传统大数据平台供应商。腾讯云大数据平台在SQL、NoSQL和机器学习三方面取得优异成绩,其中NoSQL测试成绩在17款产品中排名第2名。腾讯云大数据平台源自亿万级数据资产,在数据接入、数据处理、数据存储、数据分析等方面积累了丰富的实战经验。
场景描述:继「双十一」之后,京东也借着店庆日,制造了与其遥相呼应的「618」年中购物狂欢节。而各大电商除了用各种营销手段吸引顾客外,也在利用智能推荐不断影响着用户的购物选择。推荐系统为交易额的增长带来了极大的贡献。 关键词:智能推荐系统 电商 购物节
关注我的朋友可能很多都是学习 Python、爬虫、Web、数据分析、机器学习相关的。当然大家可能接触某个方向的时间不一样,可能有的同学已经对某个方向特别精通,有的同学在某个方向还处于入门阶段。
本月的排行榜出现了自 TIOBE 榜单发布以来,近二十年从未见过的变化:前两名的位置首次出现了一个除 C 和 Java 以外的语言。C 依然位列第一,Java 跌至第三,而第二名现在是势不可挡的 Python 。
在这个时代背景下,信息爆炸与长尾问题普遍发生,而解决方案之一是个性化推荐技术,那具体什么是个性化推荐,怎么去实现这一过程呢?这一章读者朋友需要做到的是读完以后,对个性化推荐技术有一个全局宏观的认识,对于细节不用过多地苛求。
选自Medium 机器之心编译 作者:Towards AI Team 编辑:陈萍、杜伟 一份来自 Towards AI 的关于机器学习、数据科学和深度学习的最佳笔记本电脑。在预算范围内,入手最适合的笔记本。 马要有好鞍,做研究也要有顺手的设备。所以,选择性能良好且适合自己的设备对于研究者而言至关重要。ML 学习者、深度学习从业者以及数据科学家们都在不遗余力地发挥自身性能导向型设备的优势。 究竟哪些型号的电脑最适合机器学习、深度学习和数据科学项目呢?在这即将过去的一年来,Towards AI 团队调研了 20
我们在进行机器学习的时候,肯定需要使用一个比较好的 GPU 显卡,其次就是一个性能强劲的 CPU 了。主频高的 CPU 在跑程序的时候,真的有时候比使用 GPU 都跑的快,所以如何查看自己机器的 CPU 就是必不可少的步骤了。我们常常选购笔记本或者服务器的时候,总是会看到 X 核 XG 这样的表示,今天我们就一起来了解下其中的一些常见术语吧!
越艳丽的蝴蝶,越可能身藏剧毒;站在越强的风口上,越可能衰落的粉碎。人工智能在几十年的养精蓄锐之后,终于成为全球最热科技话题,在这个风口上,大型互联网公司、初创企业都希望分一杯羹,殊不知这个风口也是充满雷区、泡沫和挑战的风口。
本文介绍了 5 大常用机器学习模型类型:集合学习算法,解释型算法,聚类算法,降维算法,相似性算法,并简要介绍了每种类型中最广泛使用的算法模型。我们希望本文可以做到以下三点: 1、应用性。 涉及到应用问题时,知识的普适性显然非常重要。所以我们希望通过给出模型的一般类别,让你更好地了解这些模型应当如何应用。 2、相关性。 本文并不包括所有的机器学习模型,比如Naïve Bayes(朴素贝叶斯)和SVM这种传统算法,在本文中将会被更好的算法所取代。 3、可消化性。对于数学基础较薄弱的读者而言,过多地解释算法会让
智能医疗、智能家居、智能出行……近期以来,随着人工智能技术的发展,一些产业正在发生变革。此前,镁客网(微信公众号:im2maker)对办公场景的人工智能应用(点击查看)作了一番分析,而此次,镁客网将分
大数据文摘授权转载自机器人大讲堂 近日,全球最大的零售商沃尔玛宣布成功收购Alert Innovation。 这笔交易一度让我们难以理解,在机器人自动化提供商如此多的情况下,为什么沃尔玛依然选择收购这样一家机器人企业? 在许多报道中,对沃尔玛的收购原因也语焉不详。机器人大讲堂详细了解Alert Innovation这家企业后,发现这笔收购背后并不简单。 与国内的移动机器人还在地上跑不同,Alert Innovation的机器人已经能够在立库货架上爬上爬下,同时Alert Innovation还是一个仓库软硬
大数据文摘授权转载自机器人大讲堂 近日,全球最大的零售商沃尔玛宣布成功收购Alert Innovation。 这笔交易一度让我们难以理解,在机器人自动化提供商如此多的情况下,为什么沃尔玛依然选择收购这样一家机器人企业? 在许多报道中,对沃尔玛的收购原因也语焉不详。机器人大讲堂详细了解Alert Innovation这家企业后,发现这笔收购背后并不简单。 与国内的移动机器人还在地上跑不同,Alert Innovation的机器人已经能够在立库货架上爬上爬下,同时Alert Innovation还是一个仓库软
选自Medium 作者:Slav Ivanov 参与:李泽南、路雪、刘晓坤 本文作者 slav Ivanov 在今年早些时候曾介绍过如何用 1700 美元预算搭建深度学习机器(参见:教程 | 从硬件配置、软件安装到基准测试,1700 美元深度学习机器构建指南)。最近,英伟达在消费级 GPU 领域又推出了 GTX 1070 Ti,如果现在想要组装一台深度学习机器,我们用哪块 GPU 最好呢?本文将详细解答这一问题。 即将进入 2018 年,随着硬件的更新换代,越来越多的机器学习从业者又开始面临选择 GPU 的
京东618 今年,你的专属618专场是什么? “京东618”不再仅仅是大促的代名词,而变成了京东黑科技轮番亮相的前沿大舞台。 买买买能“包办”?是的! 据调查,过去三年用户对网购体验最大的感受就是,他们能够更容易的找到自己喜欢的商品。京东打开京东APP,系统推送的都是用户最近想买的和最需要的,购物车里置顶的商品也是用户最喜欢的,商品数量变少或者降价系统会自动提醒,买买买也能“包办”。 通过对消费行为的分析与挖掘,给予用户个性化推荐,缩短商品与用户的距离。根据用户平日消费结构生成专属卖场,如果用户偏爱购买国
在大学刚入学的时候,很多小伙伴对于自己是不是需要电脑,需要什么类型的电脑还不是多清楚。
机器学习的相关学习资料汗牛充栋,很多有意学习的朋友被淹没在浩瀚的资料中,不明所以。因此,找到适合自己程度的资料是很关键的。
今天给大家分享一篇机器学习算法的文章,利用图解的方式介绍了10大常见的机器学习算法。看正文: ---- 在机器学习领域,有种说法叫做“世上没有免费的午餐”,简而言之,它是指没有任何一种算法能在每个问题上都能有最好的效果,这个理论在监督学习方面体现得尤为重要。 举个例子来说,你不能说神经网络永远比决策树好,反之亦然。模型运行被许多因素左右,例如数据集的大小和结构。因此,你应该根据你的问题尝试许多不同的算法,同时使用数据测试集来评估性能并选出最优项。 当然,你尝试的算法必须和你的问题相切合,其中的门道便是机器学
来源丨数据STUDIO 在进行数据科学时,可能会浪费大量时间编码并等待计算机运行某些东西。所以我选择了一些 Python 库,可以帮助你节省宝贵的时间。 1、Optuna Optuna 是一个开源的超参数优化框架,它可以自动为机器学习模型找到最佳超参数。 最基本的(也可能是众所周知的)替代方案是 sklearn 的 GridSearchCV,它将尝试多种超参数组合并根据交叉验证选择最佳组合。 GridSearchCV 将在先前定义的空间内尝试组合。例如,对于随机森林分类器,可能想要测试几个不同的树的最大深度
【12.5 - 12.7】2015·第四届TOP 100 Summit 享誉业界的全球软件案例研究峰会TOP 100 Summit将于12月5-7日在北京国家会议中心举行。本届TOP 100 Summit案例来自互联网公司、电商企业、智能硬件企业、互联网金融公司等各个领域的技术研发团队,案例议题设计产品创新、互联网转型、团队敏捷提升、大数据、架构设计、自动化运维、质量管理等热点议题。 好雨云受主办方麦思博邀请将参加本次大会。 好雨云CEO 刘凡将分享《好雨云使用OKRs做绩效管理》 案例简述 绩效管理的作用
2014年年底,NVIDIA 再为加速运算平台增添旗舰级产品——Tesla K80 双GPU 加速器,专为机器学习、资料分析、科学和高效能运算 (HPC) 等广泛应用而设,提供2 倍效能和存储器频宽。
2020年8月10日,北京——亚马逊中国隆重开启“2020亚马逊创新日”,首次揭秘创新“中国公式”背后的内涵,同时也从跨境网购、技术研发、亚马逊云服务(AWS)等层面深度解读了后疫情时代互联网创新科技,特别是人工智能(AI)和机器学习(ML)推动经济全面复苏和全球产业数字化革命的强大驱动力。本次“创新日”活动延续了“全球资源 本地创新”主题,也是亚马逊中国第三次以“创新日”形式展示全球及本地的创新成就。活动中,亚马逊中国副总裁李岩川分享了亚马逊全球的创新理念、文化和最新技术成果,并从技术应用、客户体验、商业模式三个维度解读了亚马逊为中国跨境电商行业带来的“智”的飞跃;亚马逊海外购中国技术负责人王毅则从技术研发的角度出发,展示了亚马逊为中国市场定制的本地化创新实践,并阐释了基于本地需求的创新如何成为全球创新的基石;AWS首席云计算企业战略顾问张侠则着重分享了AWS的创新实践,解读了AWS如何在支持亚马逊内部业务创新的同时,更为全球数百万客户的创新赋能,助力各行各业、各种规模的企业加速数字化转型、提高竞争力。同时,AWS一直致力于通过云服务和技术为各类机构赋能,促进科研创新以及人才培养,为经济转型和社会发展做出贡献。
近年来,直播改变了许多行业模式,其形态在不断的演进中也逐渐丰富起来。直播在字节跳动中衍生出了KTV歌房、直播答题、互动游戏、电商拍卖及企业直播等不同场景。本次分享我们邀请到火山引擎视频云音视频直播客户端研发负责人——徐鸿,向大家介绍直播场景中沉淀下的优秀架构能力和技术能力。
近日,迈克菲实验室发布了《2018年网络威胁预测报告》,该报告阐释了其对于广泛威胁的意见,预测了包括机器学习、勒索软件、无服务器(Serverless)应用程序以及隐私问题等5个安全领域的发展趋势。以下为详细内容: 1. 机器学习对抗性攻击升级:攻击者和防御者在AI领域的创新竞争 人机合作正在成为网络安全的重要组成部分,通过机器速度和模式识别能力可以在很大程度上增强人类的判断力和决策能力。机器学习也已经为安全性做出了重大贡献,它可以帮助人力工作者检测和纠正漏洞、识别可疑行为,甚至零日攻击。 在未来一年中
每周一期,纵览音视频技术领域的干货。 新闻投稿:contribute@livevideostack.com。 ---- 基于端智能的播放QoE优化 伴随着B站业务形式的不断扩展,不同场景对视频播放体验的稳定性、流畅性提出了更高的要求,为保障提供给用户更好的播放体验B站做出了哪些努力? Shopee 视频处理技术后台应用 在 8 月 6 日举办的 LiveVideoStackCon 2022 上海站大会中,Shopee 视频技术团队负责人 Zhixing 分享了 Shopee 视频处理技术的后台应用,本文
保险行业对于社会民生和国民经济的重要性不言而喻,其作为风险管理工具,为人民群众提供保障和福利,推动经济的稳定和可持续发展。保险行业在新的时代背景下,面临着新的机遇和挑战,需要不断创新和转型,以适应社会需求的变化和经济结构的调整。
不论互联网怎么发展,传播手段如何变化,“内容为王”的实质不会变。Seoer都知道网站内容质量对搜索引擎排名有非常重要的作用,但真正懂得根据用户需求来做内容的Seoer却不多,那么如何才能做好网站内容?我认为应该想明白以下几个问题。
静电:今天我们来解析瑞幸咖啡的APP设计案例。瑞幸是我最近才开始喝开始用的,突然发现他家的丝绒生椰拿铁还真挺好喝,而且价格也不贵,相对于我这种一天一杯咖啡的人来说是再合适不过了。在之前一直都是使用的小程序来下单,这次下载了他家的APP,感觉还是可圈可点的。
在过去这几年,你可能注意到了供应商们以越来越快的步伐推出服务于AI生态系统的“平台”,即满足数据科学和机器学习的需求。“数据科学平台”和“机器学习平台”在竞相吸引数据科学家、机器学习项目经理以及管理AI项目/计划的其他人士的目光和钱袋。如果你是主要的技术供应商,但在AI领域却没有大有作为,可能会迅速沦为边缘化。但是这些平台究竟是什么?为什么上演争抢市场份额这一幕?
大数据文摘作品 作者:Ajay Agrawal、Joshua Gans、Avi Goldfarb 翻译:Happen AI将如何改变公司战略? 这是我们三个人在公司高管那儿听到最常见的问题,它回答起来并不简单。AI从根本上来说是一项预测技术。随着AI预测成本越来越低,经济学理论需要更频繁、广泛地用到AI预测,预测补充的价值——例如人类行为判断——将不断提升。这对战略来说又意味着什么? 我们可以用亚马逊的思维实验来说明这个问题。很多人都能够熟练地在亚马逊网站上购物,这和大多数的在线购物平台一样,你选择一些商品
精彩内容 青云QingCloud HBase 服务上线,支持 SQL 等高级功能; 七牛云推出技术共享计划,首波直播技术公开课上线; 网易云信亮相WOT, “IM+连麦互动直播”云服务; 用友首推“数
机器学习平台的最大的驱动力应该是面向数据科学家的基于 Python 的开源技术生态系统的蓬勃发展,比如 scikit-learn、XGBoost 和 Tensorflow/PyTorch 等等。也是因为有了这些算法库的存在,让大部分人都可以使用算法去完成自己的想法,而不需要知道艰深的数学知识,也不需要知道算法的具体实现。
dHCI概念最早源于创新厂商Datrium发表于2016年1月的DVX平台,是第一种dHCI形式的产品。
目前 BAT 都有各自的机器学习开源平台,阿里云早在 2015 年就推出了数据挖掘平台 “DTPAI”;百度推出了面向开发者的 PaddlePaddle,腾讯推出了面向企业的 “Angel”。而在最近,腾讯又发布了最新的机器学习基础平台 TDinsight。 腾讯机器学习基础平台 TDinsight 据腾讯方面介绍,TDinsight 机器学习平台是为政企提供的一站式机器学习平台。用户通过可视化的拖曳布局,组合各种数据源、组件、算法、模型和评估模块,支持各种主流的开源机器学习框架,包括 Spark、Py
R是一个庞大而复杂的平台。对于最好的数据科学家来说,它也是世界上最流行的平台。
要实现高效的大数据机器学习,需要构建一个能同时支持机器学习算法设计和大规模数据处理的一体化大数据机器学习系统。研究设计高效、可扩展且易于使用的大数据机器学习系统面临诸多技术挑战。近年来,大数据浪潮的兴起,推动了大数据机器学习的迅猛发展,使大数据机器学习系统成为大数据领域的一个热点研究问题。介绍了国内外大数据机器学习系统的基本概念、基本研究问题、技术特征、系统分类以及典型系统;在此基础上,进一步介绍了本实验室研究设计的一个跨平台统一大数据机器学习系统——Octopus(大章鱼)。 关键词:大数据;机器学
云计算机器学习平台,有时也被称为机器学习即服务(MLaaS)解决方案,可以让企业更加轻松地采用人工智能(AI)。但专家表示,中小企业在考虑采用这些服务之前应该考虑其面临的潜在挑战。 云计算机器学习平台
机器学习领域的知识太多了,学习的工具包,命令、操作和公式都是数不胜数,让“新军”们理解记住太难了!所以,学生时代的一件利器派上用场了,那就是人见人爱的“小抄”,这可是个好东西。 比如说下面这些深度学习
领取专属 10元无门槛券
手把手带您无忧上云