终于等到年中囤货季不趁机把心仪的好书带回家可就要再等半年了! 这个6·18,怎么买最划算?小编已经摸清JD的套路了!JD今年百万图书每满100-50满减叠券享600-400小编整理了10本近期的爆款全都是最值得PICK的甄选好书各位同学开始行动吧! 6·18超级囤书攻略 01(扫描下方二维码,享受特惠) ▊《漫画算法2:小灰的算法进阶》魏梦舒(@程序员小灰) 著爆款漫画算法书进阶版讲述数据结构、算法及面试题目 02(扫描下方二维码,享受特惠) ▊《labuladong的算法小抄》付东来(@labul
知识图谱最早由谷歌发布,为了提升搜索引擎返回答案的质量以及用户查询的效率,在知识图谱辅助下,搜索引擎可以洞察到用户查询背后的一个语义信息,然后返回更为精准结构化的信息,从而更大可能的去满足用户的一个查询需求。
人工智能从感知阶段逐步进入认知智能的过程中,知识图谱技术将为机器提供认知思维能力和关联分析能力,可以应用于机器人问答系统、内容推荐等系统中。
👆点击“博文视点Broadview”,获取更多书讯 上周和大家分享了10本今年出版的AI领域爆品新书,受到很多小伙伴们的追捧,强烈要求博文菌再来一期! 既然小伙伴们如此求知若渴,那么博文菌就毫无保留地把今年已出版的另外8本AI领域畅销品分享给大家,希望可以帮助大家打好算法基础,深入AI实战! ---- 01 ▊《漫画算法2:小灰的算法进阶(全彩)》 魏梦舒(@程序员小灰) 著 爆款漫画算法书进阶版 和不停请假、面试的仓鼠小灰一起搞定算法与数据结构,笑迎大厂面试 《漫画算法:小灰的算法之旅》续
大家好,这里是NewBeeNLP。新闻阅读是人们日常生活中必不可少的活动,随着新闻逐渐从纸质端转变到电子端,大家可以从各种社交平台上进行新闻的阅读。同时,我们身处信息爆炸的时代,一天可能就有上万篇的新闻文章产生,这对于用户来说,会造成非常严重的信息过载的问题。
2016年7月,哈工大社会计算与信息检索研究中心(HIT-SCIR)开始启动事理图谱的研究工作。
主讲嘉宾:王昊奋 主持人:阮彤 承办:中关村大数据产业联盟 嘉宾简介: 王昊奋,华东理工大学讲师,上海交通大学计算机应用专业博士,对语义搜索、图数据库以及Web挖掘与信息抽取有浓厚的兴趣。在博士就读期间发表了30余篇国际顶级会议和期刊论文,长期在WWW、ISWC等顶级会议担任程序委员会委员。作为Apex数据与知识管理实验室语义组负责人,他主持并参与了多项相关项目的研发,长期与IBM、百度等知名IT企业进行合作,在知识图谱相关的研究领域积累了丰富的经验。 以下为分享实景全文: 王昊奋: 近两年来,随着开放链
导读:近日,清华大学计算机系教授、系副主任,智谱·AI 首席科学家唐杰在 MEET 2021 智能未来大会上作了题为《认知图谱——人工智能的下一个瑰宝》的精彩演讲。
大家都知道NLP近几年非常火,而且发展也特别快。那些耳熟的BERT、GPT-3、图神经网络、知识图谱等技术实际上也就是这几年发展起来的,特别像图神经网络在这两年间取得了飞速的发展。 我们正处在信息爆炸的时代、面对每天铺天盖地的新的网络资源和论文、很多时候我们面临的问题并不是缺资源,而是找准资源并高效学习。但很多时候你会发现,花费大量的时间在零零散散的内容上,但最后发现效率极低,浪费了很多宝贵的时间。 为了迎合大家学习的需求,我们重磅推出了《自然语言处理训练营》(一定要看到最后),主要有两个目的: 1. 对
2012年谷歌首次提出“知识图谱”这个词,由此知识图谱在工业界也出现得越来越多,对于知识图谱以及相关概念的理解确实也是比较绕。自己在研究大数据独角兽Palantir之后开始接触知识图谱,也算对其有了一定了解,这里从三个角度总结一下怎么去理解知识图谱。
5、阐述SVM原理,为何使用对偶性以及对偶性原理,SVM如何解决多分类,SVM与LR对比。
大家都知道NLP近几年非常火,而且相关技术发展也特别快,像BERT、GPT-3、图神经网络、知识图谱等技术被大量应用于项目实践中,这也推动了NLP在产业中的持续落地,以及行业对相关人才的需求。于是很多人欲转行NLP。 但是最近有同学私信我,NLP很难学,这条路能坚持走吗? 对于这位朋友的问题,我想从两方面开始回答。 NLP学起来不容易 01 很多大多数欲从事NLP相关工作的同学,往往都是通过自学的方式来进行学习,但是这样很明显的问题是: 1. 虽然学习了解了很多算法模型,但是技术深度和宽度的理解是比较薄
2016年初,京东在印尼正式落地了第一个海外本土站点;今年11.11,京东印尼站当天单量同比增长845%,连续三年保持超高速增长。
总第529篇 2022年 第046篇 今年,美团技术团队有多篇论文被KDD 2022收录,这些论文涵盖了图谱预训练、选择算法、意图自动发现、效果建模、策略学习、概率预测、奖励框架等多个技术领域。本文精选了7篇论文做简要介绍(附下载链接,论文排名不分先后),希望能对从事相关研究方向的同学有所帮助或启发。 论文01:Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries(支持知识推理的图谱预训
【新智元导读】百度度秘事业部首席技术官朱凯华日前在上海计算机学会做了题为《AI赋能的搜索和对话交互》的报告,主要介绍了现在的百度搜索及度秘“DuerOS”系统。由陆奇领衔、百度全新组建的度秘事业部有什
WSDM'23已公布录用结果,共收到投稿690篇,录用123篇,录用率为17.8% ,完整录用论文列表见WSDM'23 Accepted Papers。
自从iPhone 4S开始内置Siri,到现在各种智能音箱,或者扎克伯格说自己做的智能管家, 我认为都算是对话机器人的一类。
如果我们从不同的研究视角、研究目的以及多知识的不同认识程度对知识进行分类的话,可以分为以下几种:
2012年Google发布知识图谱以来,知识图谱技术飞速发展,其理论体系日趋完善,其应用效果日益明显。在知识图谱技术的引领下,知识工程新的历史篇章——大数据知识工程已初具轮廓;在知识图谱技术的推动下,各行各业的智能化升级与转型的宏伟画卷正逐步展开。
随着信息的爆炸性增长,构建能够理解、推理和应用知识的系统变得愈发重要。知识图谱作为一种结构化的知识表示方式,与自然语言处理(NLP)的结合将为构建更智能的系统打开崭新的可能性。本文将深入研究NLP在知识图谱中的应用,从基础概念到实际应用,揭示这一领域的发展趋势和潜在挑战。
近年来,随着人们对 AI 认知能力的积极探索,知识图谱因其表达能力强、拓展性好,基于知识进行推理等优势得到了学界与业界的高度关注。知识图谱,旨在描述客观世界概念、实体、事件及其之间关系,具备可解释性,而且可以用于解决复杂决策问题。这也意味着通过深度学习与知识图谱的结合,模型底层特征空间与人类自然语言之间巨大的语义鸿沟问题有望得以解决。在大数据和机器学习两大引擎下,大规模知识图谱的自动化构建成为现实,这就加快了知识图谱的落地与应用。
大型语言模型(LLM)已经很强了,但还可以更强。通过结合知识图谱,LLM 有望解决缺乏事实知识、幻觉和可解释性等诸多问题;而反过来 LLM 也能助益知识图谱,让其具备强大的文本和语言理解能力。而如果能将两者充分融合,我们也许还能得到更加全能的人工智能。
知识图谱自2012年提出至今,发展迅速,如今已经成为人工智能领域的热门问题之一,吸引了来自学术界和工业界的广泛关注,在一系列实际应用中取得了较好的落地效果,产生了巨大的社会与经济效益。
获客难是如今To B企业的一大难题,探迹科技的数据统计印证了此点:对于销售总监来讲如何有效增加并优化销售线索是他们面临的最大难题和痛点。
---- 新智元报道 作者:专知 【新智元导读】本文件给出了知识图谱的技术框架中知识图谱供应方、知识图谱集成方、知识图谱用户、知识图 谱生态合作伙伴的主要活动、任务组成和质量一般性能等。本文件适用于知识图谱及其应用系统的构建、应用、实施与维护。 来自“ 知识图谱标准化” 本文件给出了知识图谱的技术框架中知识图谱供应方、知识图谱集成方、知识图谱用户、知识图 谱生态合作伙伴的主要活动、任务组成和质量一般性能等。本文件适用于知识图谱及其应用系统的构建、应用、实施与维护。 本文件给出了知识图谱的技术
👆点击“博文视点Broadview”,获取更多书讯 《梦华录》是最近一段时间讨论度颇高的一部电视剧,豆瓣评分一度高达8.8分,是近些年来评分较高的一部古装影视剧。其制作相对精良,画面精美,主要人物的性格特色明显,角色鲜明。并且,这部剧的内容本身当属“披着古装的现代都市剧”,许多情节都能引起人们的共鸣。 不过,今天我们不是来聊剧情的,而是想借这部剧来谈谈知识图谱。从有意思的事情中学习,才能高效地学为所用嘛! 众所周知,知识图谱是由实体和关系组成的网状结构的知识表示。 最新的研究表明,人脑就是通过知识与知识
二者展示的信息量是差不多的,但右边这种看起来更加直观。而且,随着文本篇幅的增长,这种优势会体现得更加明显。
👆点击“博文视点Broadview”,获取更多书讯 01 多模态简介 1.知识图谱的多模态数据来源 本节探讨多模态知识图谱的问题。前面曾多次提到,知识图谱的数据来源不仅仅是文本和结构化数据,也可以是图片、视频和音频等视觉或听觉形式的数据。多模态就是指视觉、听觉和语言等不同模态通道的融合。能够充分融合和利用语言、视觉和听觉等多种模态来源数据的知识图谱叫作多模态知识图谱。 一方面,凡是蕴含知识的原始数据都可以作为知识图谱构建的数据来源,例如对于图片,也需要完成类似于文本中的实体识别和关系抽取任务。另一方面,
人工智能正逐步从感知智能迈向认知智能,其终极目标是让机器具备类似人类的思维逻辑和认识能力,特别是理解、归纳和应用知识的能力,而知识图谱在这里面起到了非常关键的作用。 所以,本期和大家分享5本知识图谱经典畅销著作和一场线上交流活动,希望能够帮助大家更加系统深入地了解这个领域,将其炉火纯青地运用到实践中! 知 识 图 谱 认真读一本书 1 book 《知识图谱:概念与技术》 简介:本书是一本系统介绍知识图谱概念、技术与实践的书籍。全书共5篇,由16 章构成,力求涵盖知识图谱相关的基本概念与关键技术。“基
随着人工智能和大数据的爆炸式增长,如何合理地组织和表示海量的知识变得至关重要。知识图谱作为图数据,可以用来积累和传递现实世界的知识。知识图谱可以有效地表示复杂信息,因此,近年来迅速受到学术界和工业界的关注。为了加深对知识图谱的理解,本文对该领域进行了系统综述。
提到 AI,大家马上想到计算机视觉、语音识别、自动驾驶、自然语言处理、芯片这些热门技术领域,这些领域的技术人才如今正受到企业们的疯抢。不过近年来,随着知识图谱技术不断被提及,作为 AI 领域底层的技术,其升温之势已经开始显现。不仅是 NLP 领域,大数据甚至是计算机视觉领域的背后都需要知识图谱技术的支持,企业内部更是开始组建专业的技术团队来支持、优化自己的产品。
在本文中,我们对知识图谱进行了全面的介绍,在需要开发多样化、动态、大规模数据收集的场景中,知识图谱最近引起了工业界和学术界的极大关注。在大致介绍之后,我们对用于知识图谱的各种基于图的数据模型和查询语言进行了归纳和对比。我们将讨论schema, identity, 和 context 在知识图谱中的作用。我们解释如何使用演绎和归纳技术的组合来表示和提取知识。我们总结了知识图谱的创建、丰富、质量评估、细化和发布的方法。我们将概述著名的开放知识图谱和企业知识图谱及其应用,以及它们如何使用上述技术。最后,我们总结了未来高层次的知识图谱研究方向。
知识图谱(KnowledgeGraph)是谷歌在2012年提出的,其旨在实现更智能的搜索引擎,并且于2013年以后开始在学术界和业界普及。目前,随着智能信息服务应用的不断发展,知识图谱已被广泛应用于智能搜索、智能问答、个性化推荐、情报分析、反欺诈等领域。随着知识图谱技术不断发展,现在已不仅仅局限于语义搜索相关应用,还成为了解决抽象知识与底层数据之间语义鸿沟问题的主要方法。
人工智能(Artificial Intelligence,AI)是一种通过计算机模拟人类智能的技术,其应用范围越来越广泛。知识图谱(Knowledge Graph,KG)则是人工智能技术中的重要组成部分,它是一种结构化的、语义化的知识表示方式,能够帮助计算机理解和处理人类语言。
本文介绍了知识图谱的概念、发展历程,以及明略数据在知识图谱领域的应用和贡献。明略数据作为知识图谱领域的领军企业,通过多年的技术积累和创新,已经成功应用于金融、公安、工业等多个行业。未来,明略数据将继续深耕知识图谱领域,推动大数据技术与知识图谱的融合发展,为行业提供更为高效、智能的解决方案。
在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优秀的综述文章,开辟“综述专栏”,敬请关注。
知识图谱是一种大规模语义网络,已经成为大数据时代知识工程的代表性进展。 知识图谱技术是实现机器认知智能和推动各行业智能化发展的关键基础技术。由复旦大学肖仰华教授策划的《知识图谱:概念与技术》课程体系,已在国内进行了多次巡回演讲,受到参会人员一致好评。 课程主要目的和宗旨是系统讲述知识图谱相关知识,让同学们对知识图谱的理论和技术有一个系统的认知。本实录来自该课程老师和同学的研讨。 下面让我们通过第二章课程《知识图谱基础知识》的15条精华研讨,来进一步学习了解知识图谱技术内幕。 本课程配套教材《知识图谱:概念
工业制造发展迅速,各式各样的工业互联网平台脱颖而出,但在它们之中做工业知识图谱的少之又少,这到底是为什么呢?
此文内容取自肖仰华教授在华为、CCF等场合所做报告,完整内容见书籍《知识图谱:概念与技术》的第15章《知识图谱实践》。
说到人工智能技术,人们首先会联想到深度学习、机器学习技术;谈到人工智能应用,人们很可能会马上想起语音助理、自动驾驶等等,不过,在AIWorld 2017世界人工智能大会上,百度副总裁、AI技术平台体系(AIG)总负责人王海峰却没有讲这些,这次他聊的是知识图谱。 虽然你可能说不出知识图谱的具体定义,但其实每天都在使用它。当你在百度搜索时,搜索结果右侧的联想,就来自于知识图谱技术的应用;你问百度某个字怎么念,答案也来自知识图谱的应用;你和度秘聊天,问他詹姆斯和科比谁厉害、都取得了哪些成就等等,背后都是知识图谱
论文为A Survey on Knowledge Graphs: Representation, Acquisition and Applications,发表日期2020年,论文PDF,点击链接。
知识图谱能够让机器去理解和认知世界中的事物和现象,并解释现象出现的原因,推理出隐藏在数据之间深层的、隐含的关系,使得知识图谱技术从最初谷歌用来提升搜索引擎的结果来增强用户体验,到现在已经被金融、公安、能源、教育、医疗等领域众多行业进行大量运用。
10月31日,由北京智源人工智能研究院主办的2019北京智源大会在国家会议中心开幕,本次大会吸引到了国内外人工智能领域的顶级专家学者参与,他们围绕人工智能基础研究现状及面临的机遇和挑战、人工智能技术未来发展的核心方向等话题,展开了深入研讨。
这几天百度不断出新,让人目不暇接。在极简首页之后,《小时代3》的百度知识图谱也悄然在搜索页上线。《小时代3》大热之际,其错综复杂的人物关系并不是每个观众都能理清,百度通过掌握的知识图谱数据直接给出了清晰的网状关系,可视化、支持互动。笔者注意到这个产品的网址前缀是tupu.baidu.com,看来接下来百度必然会推出各种独立的“图谱”页面,知识图谱产品狂想曲已然奏响。 我们已从信息时代进入知识时代 如果要对互联网进行分层,它大概可以分为四层。 最底层是将实体世界比特化的“数据”。二进制存储技术、文件结构以及
今天和大家聊聊并发。 虽然搞了多年 Java,可许多朋友一提到“并发”就头疼: 为什么我已经学习了很多相关技术,可还是搞不定并发编程? 小公司根本遇不到并发问题,高并发经验该怎么积累?平时该怎么学习? 昨天面试又卡在并发问题上了,并发编程难道已经成为大厂必备的敲门砖了吗? 有这些困惑很正常,因为并发编程是 Java 语言中最为晦涩的知识点,它涉及操作系统、内存、CPU、编程语言等多方面的基础能力,而这些知识点看上去非常的零散、独立,可实则关联性又比较强,更为考验一个程序员的内功。 并发编程的优势是
鞠建勋,携程度假AI研发团队资深算法工程师,主要负责携程度假自然语言处理相关的AI项目。硕士毕业于南京大学,有五年的自然语言处理经验,专注于自然语言处理和知识图谱方面的应用和算法研发。
大语言模型有巨大的潜力,但也存在明显的缺陷。知识图谱可以使大语言模型变得更准确、透明,并且结果易于解释。
本节探讨多模态知识图谱的问题。前面曾多次提到,知识图谱的数据来源不仅仅是文本和结构化数据,也可以是图片、视频和音频等视觉或听觉形式的数据。多模态就是指视觉、听觉和语言等不同模态通道的融合。能够充分融合和利用语言、视觉和听觉等多种模态来源数据的知识图谱叫作多模态知识图谱。
互联网时代,人类在与自然和社会的交互中生产了异常庞大的数据,这些数据中包含了大量描述自然界和人类社会客观规律有用信息。如何将这些信息有效组织起来,进行结构化的存储,就是知识图谱的内容。
领取专属 10元无门槛券
手把手带您无忧上云