来源:专知本文为课程介绍,建议阅读5分钟适合深度学习和行人重识别领域无基础的入门者学习。 该课程为浙江大学罗浩博士于2018年10月录制的《基于深度学习和行人重识别》网课视频,该课程首发于AI300学院。为了让更多人学习该课程,现免费在B站公开。由于该网课录制于2018年末,所以知识点已经有些陈旧,因此主要适合深度学习和行人重识别领域无基础的入门者学习,有基础者无需学习此课程。课程主要包括深度学习基础、行人重识别理论基础和行人重识别代码实践三个篇章。考虑到该课程免费开放以及作者工作较忙,所以日后很难有精力进
人脸识别在LFW超越人的识别能力之后,就很少有重大的突破了,逐渐转向视频中人脸识别或人脸属性学习等方向。CV顶级会议的接受论文量也出现了逐渐平稳的趋势。 而行人重识别(Person re-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。 给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补目前固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合 ,可广泛应用于智能视频监控、智能安保等领域。 行人重识
这里分享下大佬(目前就职于大疆创新)的研究生期间的成长路线。虽然说没有适合每个人的方法,因为每个人的特点和所处的环境都不一样,但有个参考总是好的,所以我在这悄悄把自己研究生三年的经历写一下,前面可能会写的详细一点,希望能对这些同学有所帮助。
本文为 2018 年 5 月 11 日在微软亚洲研究院进行的 CVPR 2018 中国论文宣讲研讨会中第三个 Session——「Person Re-Identification and Tracking」环节的四场论文报告。
论文解读: Quantized Convolutional Neural Networks for Mobile Devices
AI 科技评论按:提到计算机视觉领域的研究,大家可能最先想到的是人脸识别,其实还有一个更为实用的研究应用——行人再识别。行人再识别是利用计算机视觉技术在图像或视频中检索特定行人的任务,面临着视角变化大、行人关节运动复杂等诸多困难,是一个极富挑战的课题。本文就来为大家重点介绍一下行人再识别的一些基础知识及最新研究进展。 2017年,行人再识别研究飞速进展。例如,在公开数据集Market-1501上,一选正确率从2016年ECCV中较高的65.9%提高到2017年ICCV中的80+%,arXiv近期一些pape
由中国图象图形学学会和腾讯高校合作主办、中国图象图形学学会视觉大数据专委会承办的“ECCV 2018 China Pre-Conference论文宣讲研讨会”于7月30日在深圳腾讯大厦顺利举办。150余位来自学界、工业界的研究人员参与了本次研讨会。会议日程包含12篇论文口头报告,20篇论文海报展示,并邀请到多位业界专家开展题为“计算机视觉的今天与明天,城内与城外”的圆桌论坛,分享各自在计算机视觉领域的最新研究结果和相关技术观点。 论文口头报告-12篇 哈尔滨工业大学(深圳)张正博士带来题为“Highly-E
前几天英伟达开源了DG-Net的源码。让我们来回顾一下这篇CVPR19 Oral的论文。
全球计算机视觉顶级会议 IEEE CVPR 2019(Computer Vision and Pattern Recognition,即IEEE国际计算机视觉与模式识别会议) 即将于6月在美国长滩召开。本届大会总共录取来自全球论文1299篇。中国团队表现不俗,此次,腾讯公司有超过58篇论文被本届CVPR大会接收,其中腾讯优图实验室25篇、腾讯AI Lab33篇,相比过去两年成绩大幅提升。 作为计算机视觉领域级别最高的研究会议,CVPR2019录取论文代表了计算机视觉领域在2019年最新和最高的
论文名称:Cross-modality Person re-identification with Shared-Specific Feature Transfer
本文主要是介绍自己做的一个工作:SphereReID: Deep Hypersphere Manifold Embedding for Person Re-Identication(https://arxiv.org/abs/1807.00537),用了 Softmax 的变种,在行人重识别上取得了非常好的效果,并且端到端训练,网络结构简单。在 Market-1501 数据集上达到 94.4% 的准确率(并且不需要 re-ranking 和 fine-tuning)。
本文作者为悉尼科技大学博士生武宇(Yu Wu),他根据 CVPR 2018 录用论文 Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning 为 AI 科技评论撰写了独家解读稿件。
论文名称:Rotation-invariant Mixed Graphical Model Network for 2D Hand Pose Estimation
本文选自BMVC2018的论文《Deep Association Learning for Unsupervised Video Person Re-identification》,使用无监督学习解决行人重识别的问题,更加贴近行人重识别的应用场景,同时性能也大幅提升。
内容提要:行人重识别技术,广泛应用于智慧城市、自动驾驶等场景中,近年取得飞速发展。这也得益于训练数据规模的扩大、深度学习的发展。
本文作者 Liqian Ma,他为 AI 科技评论撰写了他作为第一作者被 CVPR 2018 录用的 Spotlight 论文解读稿件。
全球计算机视觉顶级会议 IEEE CVPR 2019(Computer Vision and Pattern Recognition,即IEEE国际计算机视觉与模式识别会议) 即将于6月在美国长滩召开。本届大会总共录取来自全球论文1299篇。中国团队表现不俗,此次,腾讯公司有超过58篇论文被本届CVPR大会接收,其中腾讯优图实验室25篇、腾讯AI Lab33篇,相比过去两年成绩大幅提升。
全球计算机视觉顶级会议 IEEE CVPR 2019(Computer Vision and Pattern Recognition,即IEEE国际计算机视觉与模式识别会议) 即将于6月在美国长滩召开。本届大会总共录取来自全球论文1299篇。中国团队表现不俗,此次,腾讯公司有超过58篇论文被本届CVPR大会接收,其中腾讯优图实验室25篇、腾讯AI Lab 33篇,相比过去两年成绩大幅提升。
刚刚,在总部所在地上海,依图召开创办以来首场发布会,正式对外宣布其AI芯片业务的消息。
内容提要:计算机视觉领域三大国际顶级会议之一的 ECCV 2020,于 8 月 23 日至 27 日在线召开。今年 ECCV 共接受论文 1361 篇,我们从中筛选出了 15 篇最受关注的论文,与读者分享。
近日,计算机视觉方向的三大国际顶级会议之一的ECCV 2020公布论文获奖结果。本次ECCV 2020有效投稿5025篇,最终被接受发表论文1361篇,录取率为27%,较上届有所下降。其中,oral的论文数为104篇,占提交总量的2%;spotlight的数目为161篇,占提交总量的5%;其余论文均为poster。
这篇文章有4篇论文速递信息,涉及目标跟踪、GAN、Zero-Shot Learning、视频分类和行人重识别等方向(含一篇IJCAI 2018和一篇IROS 2018 submission )。
谈到人工智能,大众最耳熟能详的当属人脸识别技术,它已经渗透到了我们生活的方方面面。但在计算机视觉领域,另一项技术的重要性也不遑多让,那就是行人重识别(ReID)技术。
中国图象图形学学会围绕「生物特征识别」这一主题,在中科院自动化所成功举办了第四期「CSIG 图像图形学科前沿讲习班」。
[1]《Towards Improved Cartoon Face Detection and Recognition Systems》
摘要:行人重识别(Person Re-Identification,简称Re-ID),是一种利用计算机视觉技术来检索图像或者视频序列中是否存在特定行人的AI技术,在智慧城市等监控场景中具有重要的应用意义和前景。本文介绍我们最新的IEEE TPAMI综述论文 《Deep Learning for Person Re-identification: A Survey and Outlook》,该文作者来自武汉大学、起源人工智能研究院(IIAI)、北理工、英国萨里大学、Salesforce亚洲研究院。
论文题目:Video-based Person Re-identification with Spatial and Temporal Memory Networks
随着近年来智能城市监控的发展和自动驾驶的兴起,视频目标跟踪得到了更多的研究者的关注,其中包括单目标跟踪、多目标跟踪、跨摄像头多目标跟踪等等。目标跟踪也涉及很多相关领域,例如视频分割、轨迹预测、行人重识别等等。5月30日(周四),两位主讲嘉宾(高旭,王强)为大家精选了视频目标跟踪及相关领域中的几篇代表性工作,和大家一起学习、分享最新的研究进展。
最近,在网上搜索关于“行人重识别”及“行人再识别”等关键词,发现几乎都是关于行人检测的内容。对于“行人重(再)识别”技术能找到的资料很少,这可能是因为“行人重(再)识别”技术最近才刚刚兴起吧。 总之,除了能在谷歌学术中搜到一些Person re-identification的学术论文外,其他的资料明显没有行人检测的多。 概念解释 “行人重(再)识别”,首先从字面上将就是对“行人”进行“识别”。其中的“重(再)”则是指“重新”、“再一次”的意思。 “行人重(再)识别”技术主要是应用在视频监控方面。在刑侦工作中
行人搜索是图像搜索问题的第一个尝试。在此之前,虽然对人的检测和重识别做了大量的努力,但大多数都是独立处理这两个问题的。也就是说,传统方法将行人搜索任务划分为两个独立的子任务。
AI 科技评论按:本文作者郭瑞娥,首发于中科院自动化所「智能感知与计算研究中心」微信公众号,AI 科技评论获授权转载。 CVPR 是计算机视觉、模式识别和人工智能领域国际顶级会议,2018 年 6 月 18-22 日将在美国盐湖城召开,届时 AI 科技评论也会在现场带来一线报道。 不论你是论文录用作者,还是即将参会的企业机构,欢迎联系 AI 科技评论小编(微信号:aitechreview)报道/合作哟。 智能感知与计算研究中心为中科院自动化所独立建制的科研部门,致力于研究泛在智能感知理论与技术以及与之相伴的
论文 1:MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis
今日介绍10篇论文,来自腾讯旗下视觉研发平台腾讯优图,涉及数学速算批改、视频识别、语义分割等技术领域,跨越识别、交通、教育和医疗等场景,是腾讯优图最新研发成果。
回顾 CVPR 2018 ,旷视科技有 8 篇论文被收录,如高效的移动端卷积神经网络 ShuffleNet、语义分割的判别特征网络 DFN、优化解决人群密集遮挡问题的 RepLose、通过角点定位和区域分割优化场景文本检测的一种新型场景文本检测器、率先提出的可复原扭曲的文档图像等等。
【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢!专知为大家呈送专知主题荟萃知识资料大全集荟萃 (入门/进阶/综述/视频/代码/专家等),请大家查看!专知访问www.zhuanzhi.ai, 或
论文名称:Sketch Less for More: On-the-Fly Fine-Grained Sketch Based Image Retrieval
顶会AAAI 2022的惨烈程度,各位投稿人一定心有体会,近万篇投稿只有15%的录取率,无数全positive的优秀工作被录取率卡掉。
作为一名学术领域的探索者,我们都知道,检索和阅读论文是我们获取知识、启发思考、验证假设的基石,也是日常学习中必不可少的基本功之一。然而在浩瀚的学术海洋中,如何快速、准确地找到我们需要的论文,就像是航海家如何在茫茫大海中找到正确的航线。海量的学术资源、复杂的检索系统、不断更新的研究热点,都为我们设置了重重障碍。最近,我就收到了不少同学私信说他们检索并阅读完一篇论文所花费的时间,甚至比追完一季电视剧还要长,那么:
本文介绍一篇来自 ACMMM20 Oral 的论文,这篇论文主要通过构建一个 benchmark,并基于 benchmark 结果的深入分析,提出两个优化方法,提升现实场景下联邦学习在行人重识别上碰到的数据异构性问题。
PS:Amusi前几天在忙其它事,论文速递耽搁了近一个星期,还请大家见谅。因为时间因素,和往常一样,每篇paper不附带相应的图示。如果本文中出现明显重大的翻译问题,还请大家指出,谢谢
行人检测的论文不多,总计 5 篇,从内容看解决行人与行人、行人与物体间的遮挡是研究的重点。
AI 科技评论按:本文为浙江大学罗浩为 AI 科技评论撰写的独家稿件,得到了作者本人指点和审核,在此表示感谢。 前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。 在监控视频中,由于相机分辨率和拍摄角度的缘故,通常无法得到质量非常高的人脸图片。当人脸识别失效的情况下,ReID就成为了一个非常重要的替代品技
微软亚洲研究院是国内顶级CV研究机构,众多CV黑科技的诞生地,2020年始,亚研院盘点了2019年CV领域重点论文,大部分附有开源代码,希望对大家有帮助。
城市利用交通摄像头作为全市范围内的传感器来优化交通流量和管理交通事故潜力巨大。但现有技术缺乏大范围跟踪车辆的能力,这些车辆跨越多个摄像机,分布在不同的十字路口,天气条件也各不相同。
CVPR2018: Unsupervised Cross-dataset Person Re-identification by Transfer Learning of Spatio-tempora
在越发重视科技自主创新,新产业国际竞争逐渐激烈的时代,我们更加坚信,科研道路没有捷径可走,只有脚踏实地,一步一个脚印,不断积累方能实现创新。 7年来,犀牛鸟基金为全球范围内的青年学者提供了解产业真实问题、接触业务实际需求的机会,并通过连接青年学者与企业研发团队,开展基础扎实的产学科研合作,推动双方学术视野的拓展及原创应用成果的落地,为科技自主研发的探索和创新储备能量。 2018年CCF-腾讯犀牛鸟基金合作进入收官阶段,小编将分四期介绍全部25个科研基金项目,本期将继续重点介绍《计算机视觉及模式识别》研究
行人重识别(reID)是一项极具挑战性的任务,该任务以在多个摄像头拍摄出来的图像中识别相同行人为目标。随着深度学习方法的广泛使用,reID 的性能借助不同的算法得到快速提高。在用深度神经网络学习表征的问题上大家做了各种尝试,但姿势变化、图像模糊以及目标遮挡等问题仍对学习判别式特征提出了巨大的挑战。解决这些问题有两类方法,对齐行人图像 [1] 或通过学习身体区域的特征整合行人的姿势信息 [2]。但这些工作在推断阶段也需要辅助的姿势信息,这样就限制了算法在没有姿势信息的情况下泛化新图像的能力。与此同时,由于对姿势估计的推断更复杂了,计算成本也随之增加。
AI 科技评论消息,计算机视觉欧洲大会(European Conference on Computer Vision,ECCV)于 9 月 8 -14 日在德国慕尼黑召开,今天已进入会议第二日。会议前两日为 workshop 和 tutorial 预热环节,主会将于当地时间 9 月 10 日召开。
本文转载自腾讯AI实验室 计算机视觉欧洲大会(European Conference on Computer Vision,简称ECCV)将于9月8日-14日在德国慕尼黑举办,该会议与CVPR、ICCV共称为计算机视觉领域三大顶级学术会议,每年录用论文约300篇。 今年是腾讯AI Lab第二次参加ECCV,共有19篇文章入选,以下为摘要解读。 在近期结束的多个顶会中,腾讯AI Lab还有多篇论文入选,位居国内企业前列,包括ACL 2018 (5篇)、ICML 2018(16篇)、CVPR 20
领取专属 10元无门槛券
手把手带您无忧上云