首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    手撕numpy(四):数组的广播机制、数组元素的底层存储

    概念:广播(Broadcast)是numpy对不同形状(shape)的数组,进行数值计算的方式,对数组的算术运算通常在相对应的元素上进行。...注意:不同形状的数组元素之间进行数值计算,会触发广播机制;同种形状的数组元素之间,直接是对应元素之间进行数值计算。...结论: 不同形状的数组之间能不能触发广播机制,主要看对应形状的每一个位置上的数字,是否满足如下要求。...① 要么对应位置上的数字完全一致,可以触发广播机制,比如说第Ⅵ组; ② 对应位置上的数字要是不一样,那么对应位置上,必须有一个数字是1,比如说Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ; 如果对应位置上的数字不仅不相同,且没有任何一个的数字为...原因是:numpy的底层是集成了C语言的,因此numpy数组元素的底层存储也就是“C风格”的,下面我们来对这种风格进行说明。

    1.2K30

    numpy入门-数组中添加和删除元素

    添加和删除元素的方法主要是 append:只能追加在末尾 insert:可以在指定位置插入 delete:删除元素 unique:数组中元素去重 append numpy.append(arr,values...,axis=None) arr:输入向量 values:将values值插到arr后面;values和arr应该维度相同 axis:在哪个维度上进行增加元素;默认是返回的的是一个被拉平的向量 import...[]:numpy的括号好严格 array([[ 1, 2, 3], [ 4, 5, 6], [17, 18, 19]]) insert **numpy.insert(...a上,不是上一步变化之后的数组,注意维度的一致性 array([[1, 9, 2], [3, 9, 4], [5, 9, 6]]) np.insert(a, 1, [9,8,7..., 11]]) np.delete(b,5) # 删除数组中指定的元素5;变成一维数组 array([ 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11]) np.delete

    6.3K10

    numpy通用函数:快速的逐元素数组函数

    在这个过程中,NumPy通用函数(ufuncs)脱颖而出,成为加速逐元素数组操作的利器。 NumPy通用函数不仅仅是速度的象征,它们还提供了一种优雅而灵活的方式来处理元素级运算。...本文将深入探讨NumPy通用函数,揭示它们在数组操作中的巧妙之处,并演示如何通过它们轻松实现快速的逐元素数组函数。...NumPy通用函数:快速的逐元素数组函数 NumPy是Python中重要的数值计算库,提供了强大的数组操作和广播功能。...NumPy通用函数的使用 NumPy通用函数具有一般函数的特性,它可以对数组中的每个元素进行相同的操作,并返回一个新的数组作为结果。...总结: NumPy通用函数是NumPy库中强大的功能之一,它能够实现快速的逐元素数组操作,大大提高了数值计算的效率。

    35610

    【深度学习】 NumPy详解(三):数组数学(元素、数组、矩阵级别的各种运算)

    Numpy的主要功能包括: 多维数组:Numpy的核心是ndarray对象,它是一个多维数组,可以存储同类型的元素。这使得Numpy非常适合处理向量、矩阵和其他多维数据结构。...广播(Broadcasting):Numpy支持不同形状的数组之间的运算,通过广播机制,可以对形状不同的数组进行逐元素的操作,而无需显式地编写循环。...spm=1001.2014.3001.5501 3、数组数学 1. 元素级别 NumPy提供了许多在数组元素级别进行数学运算的函数,例如加法、减法、乘法、除法、幂运算等。...平均值:np.mean() import numpy as np arr = np.array([1, 2, 3, 4, 5]) # 计算数组的平均值 mean_value = np.mean(arr...求和:np.sum() 计算数组所有元素的和 import numpy as np arr = np.array([1, 2, 3, 4, 5]) # 计算数组的元素和 sum_value

    11810

    构造元素不等于两相邻元素平均值的数组

    题目 给你一个 下标从 0 开始 的数组 nums ,数组由若干 互不相同的 整数组成。 你打算重新排列数组中的元素以满足:重排后,数组中的每个元素都 不等于 其两侧相邻元素的 平均值 。...更公式化的说法是,重新排列的数组应当满足这一属性:对于范围 1 的每个 i ,(nums[i-1] + nums[i+1]) / 2 不等于 nums[i...示例 1: 输入:nums = [1,2,3,4,5] 输出:[1,2,4,5,3] 解释: i=1, nums[i] = 2, 两相邻元素平均值为 (1+4) / 2 = 2.5 i=2, nums[...i] = 4, 两相邻元素平均值为 (2+5) / 2 = 3.5 i=3, nums[i] = 5, 两相邻元素平均值为 (4+3) / 2 = 3.5 示例 2: 输入:nums = [6,2,0,9,7...] 输出:[9,7,6,2,0] 解释: i=1, nums[i] = 7, 两相邻元素平均值为 (9+6) / 2 = 7.5 i=2, nums[i] = 6, 两相邻元素平均值为 (7+2) /

    28830

    【NumPy学习指南】day1 NumPy在数组操作上优势

    NumPy数组在数值运算方面的效率优于Python提供的list容器。使用NumPy可以在代码中省去很多循环语句,因此其代码比等价的Python代码更为简洁。...同时,我们使用NumPy中的arange函数来创建包含0~n的整数的NumPy数组。代码中的arange函数前面有一个前缀numpy,表明该函数是从NumPy模块导入的。...让我们来看看纯Python代码和NumPy代码是否得到相同的结果: import sys from datetime import datetime import numpy as np #省略上面两处代码...显然,NumPy代码比等价的纯Python代码运行速度快得多。有一点可以肯定,即不论我们使用NumPy还是Python,得到的结果是一致的。不过,两者的输出结果在形式上有些差异。...注意,numpysum()函数的输出不包含逗号。这是为什么呢?显然,我们使用的是NumPy数组,而非Python自身的list容器。

    36420

    【科学计算包NumPy】NumPy数组的创建

    NumPy 是在1995年诞生的 Python 库 Numeric 的基础上建立起来的,但真正促使 NumPy 的发行的是 Python 的 SciPy 库。...NumPy 的诞生弥补了这些缺陷,它提供了两种基本的对象: ndarray :是储存单一数据类型的多维数组。 ufunc :是一种能够对数组进行处理的函数。   ...NumPy 常用的导入格式: import numpy as np 一、创建数组对象   通常来说, ndarray 是一个通用的同构数据容器,即其中的所有元素都需要相同的类型。...] [ 0. 0. 1.]] 8、eye 函数:返回一个N×M阶的矩阵(k所代表的对角线为上的元素1) 格式:np.eye(N,M=None, k=0, dtype=...print就可以输出 输出: 秩为: 1 形状为: (4,) 元素个数为: 4 数据类型为: int32 每个元素的字节大小: 4 16 numpy.ndarray (二)数组的转置 1、一维数组的转置还是它本身

    11100

    【实验楼-Python 科学计算】Numpy - 多维数组(上)

    创建 numpy 数组 初始化numpy数组有多种方式,比如说: 使用 Python 列表或元祖 使用 arange, linspace 等函数 从文件中读取数据 列表生成numpy数组 我们使用 numpy.array...模块提供的 ndarray 类型 type(v), type(M) => (numpy.ndarray'>,numpy.ndarray'>) v 与 M 数组的不同之处在于它们的维度...我们可以通过 ndarray.shape 获得它的维度属性: v.shape=> (4,)M.shape=> (2, 2) 数组的元素数量可以通过 ndarray.size 得到: M.size=> 4...Numpy 数组是 静态类型 并且 齐次。 元素类型在数组创建的时候就已经确定了。 Numpy 数组节约内存。...使用 ndarray 的 dtype 属性我们能获得数组元素的类型: M.dtype=> dtype('int64') 当我们试图为一个 numpy 数组赋错误类型的值的时候会报错: M[0,0] =

    1.5K20

    初探numpy——数组的创建

    方法创建数组 numpy.empty方法可以创建一个指定形状、数据类型且未初始化的数组 numpy.empty(shape , dtype = float , order = 'C') 参数 描述 shape...方法创建数组 numpy.zeros方法可以创建一个指定大小的数组,数组元素以0来填充 numpy.zeros(shape , dtype = float , order = 'C') 参数 描述 shape...使用numpy.ones方法创建数组 numpy.ones方法可以创建一个指定大小的数组,数组元素以1来填充 numpy.ones(shape , dtype = float , order = 'C'...方法创建数组 numpy.linspace用于创建一个一维等差数列的数组 numpy.linspace(start , stop, num=50 , endpoint=True , retstep =...方法创建数组 numpy.linspace用于创建一个一维等比数列的数组 numpy.linspace(start , stop , num = 50 , endpoint = True , base

    1.7K10

    Numpy中的数组维度

    ., 23) 进行重新的排列时,在多维数组的多个轴的方向上,先分配最后一个轴(对于二维数组,即先分配行的方向,对于三维数组即先分配平面的方向) # 代码 import numpy as np # 一维数组...a = np.arange(24) print("a的维度:\n",a.ndim) # 现在调整其大小,2行3列4个平面 b = np.reshape(np.arange(24), (2, 3, 4)...) # b 现在拥有三个维度 print("b(也是三维数组):\n",b) # 分别看看每一个平面的构成 print("b的每一个平面的构成:\n") print(b[:, :, 0]) print(...b[:, :, 1]) print(b[:, :, 2]) print(b[:, :, 3]) # 运行结果 a的维度: 1 b(也是三维数组): [[[ 0 1 2 3] [ 4 5...6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]] b的每一个平面的构成: [[ 0 4 8] [

    1.6K30

    NumPy 获取唯一元素、出现次数、展平数组

    你好 ,我是 zhenguo 本篇文章介绍2个 NumPy 高频使用场景,以及对应的API及用法,欢迎学习。 1 如何获得唯一元素和出现次数 使用np.unique可以很容易地找到数组中唯一的元素。...要获取NumPy数组中唯一值的索引(数组中唯一值的第一个索引位置的数组),只需在np.unique()中传递return_index参数: >>> unique_values, indices_list...参数与数组一起传递,以获取NumPy数组中唯一值的频率计数。...有两种常用的展平数组的方法:.flatten() 和.ravel()。...两者之间的主要区别在于,使用ravel()创建的新数组实际上是对父数组的引用(即“视图”)。这意味着对新数组的任何更改也将影响父数组。因为ravel不创建拷贝,所以它的内存效率很高。

    2.3K20

    【NumPy 数组过滤、NumPy 中的随机数、NumPy ufuncs】

    python之Numpy学习 NumPy 数组过滤 从现有数组中取出一些元素并从中创建新数组称为过滤(filtering)。 在 NumPy 中,我们使用布尔索引列表来过滤数组。...布尔索引列表是与数组中的索引相对应的布尔值列表。 如果索引处的值为 True,则该元素包含在过滤后的数组中;如果索引处的值为 False,则该元素将从过滤后的数组中排除。...实例 用索引 0 和 2、4 上的元素创建一个数组: import numpy as np arr = np.array([61, 62, 63, 64, 65]) x = [True, False...,该数组仅返回原始数组中的偶数元素: import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7]) # 创建一个空列表 filter_arr =...随机数并不意味着每次都有不同的数字。随机意味着无法在逻辑上预测的事物。 伪随机和真随机 计算机在程序上工作,程序是权威的指令集。因此,这意味着必须有某种算法来生成随机数。

    13210

    【科学计算包NumPy】NumPy数组的基本操作

    一、数组的索引和切片 (一)数组的索引 首先,导入 NumPy 库。 import numpy as np 一维数组的索引与 Python 列表的索引用法相同。...,表示所有列 print("n[:,-1]用于取最后一列:",n[:,-1]) # 单个冒号:出现在行的位置上,表示所有行 注意此处二维数组的冒号与前面一维数组***处冒号的区别:前者冒号是分隔符...(2)如果两个数组的形状在任何一个维度上都不匹配,那么数组的形状会沿着维度为 1 的维度进行扩展,以匹配另一个数组的形状。 (3)输出数组的 shape 是输入数组 shape 的各个轴上的最大值。...NumPy 提供的 where 方法可以克服这些问题。...z[idx]) 输出: 索引数组idx= [2, [1, 3]] 用idx做索引检索数组z得到的子集z[idx]= [92 52] 五、应用统计与排序函数 (一)常用统计函数 NumPy 中提供了很多用于统计分析的函数

    12210

    Numpy的轴及numpy数组转置换轴

    这个2维数据是由3个1维数组组成的,这3个1维数组当然也有索引号也是[0,1,2],[ :2 ] 就表示它要切取2维(0轴)上3个1维数组中的索引 [ 0 ] 和索引 [ 1 ] ,于是得到 ([ 1,...首先看2个参数的切片操作: print(数组[:2,1:]) 就是在两个维度(轴)上各切一刀,第1个参数就是2维(0轴), :2 表示切取2维(0轴)上的索引 [ 0 ] 和索引 [ 1 ] ,即 (...[ 1, 2, 3 ]) 和 ([ 4, 5, 6 ]) 这两个1维数组 第2个参数就是1维(1轴),1: 表示切取1维(1轴)上的索引 [ 1 ] 和索引 [ 2 ] ,即对数组 ([ 1, 2,...((2, 2, 4)) print(数组) print(数组.shape) 数组的维度:(2,2,4) 元组索引(下标):[0,1,2] 我们转换它: 3维数组的1维(2轴)上是4个一维数组,每个1维数组都有一个由...] 也就是把数组 [ 0,1 ] 的一维数组变成数组[ 1,0 ] numpy数组转置换轴 transpose方法 【行列转置】 import numpy as np 数组=np.arange(24

    23110
    领券