这里它只返回最后一列作为文本特性,其余的作为数字特性。然后在文本上应用Tfidf矢量化并输入分类器。..., hidden_state = self.lstm(embeds, hidden_state)
lstm_out = lstm_out[-1,:,:]
lstm_out...= self.dropout(lstm_out)
dense_out = self.fc1(lstm_out)
concat_layer = torch.cat((...(13, 1, 1, 1), dim=[1, 3])
atten = F.softmax(atten.view(-1), dim=0)
feature = torch.sum...1, 1, 1), dim=[0, 2])
dense_out = self.fc1(self.dropout(feature))
concat_layer = torch.cat