在这一系列文章中,我通过在每个 Python 绘图库中制作相同的多条形绘图,来研究不同 Python 绘图库的特性。这次我重点介绍的是 Bokeh(读作 “BOE-kay”)。...=FactorRange(*x), width=2000, title="Election results") 你需要让 Bokeh 创建一个颜色表,这是一个特殊的 DataSpec 字典,它根据你给它的颜色映射生成...在这种情况下,颜色表是一个简单的党派名称和一个十六进制值之间的映射。...图表上数据的可视化形式被称为“ 字形(glyphs)”,因此你已经创建了一组条形字形。...下面是结果: 借助 Bokeh 的 HTML 输出,将绘图嵌入到 Web 应用中时,你可以获得完整的交互体验。你可以在这里把这个例子复制为 Anvil 应用(注:Anvil 需要注册才能使用)。
▲图2 代码示例②运行结果 代码示例②第3行使用multi_line()方法,实现一次性绘制两条折线,同时,在参数中定义不同折线的颜色。...▲图3 代码示例③运行结果 代码示例③第13、15、16行使用line()方法逐一绘制折线,该方法的优点是基本数据清晰,可在不同线条绘制过程中直接定义图例。...▲图5 代码示例⑤运行结果 代码示例⑤第15、16行使用line()方法绘制两组不同颜色的曲线。...▲图6 代码示例⑥运行结果 代码示例⑥第19行中,生成绘图数据时,同时生成图例名称列表;第37、43行使用multi_line()方法一次性绘制6条曲线,并预定义图例。...▲图11 代码示例⑪运行结果 代码示例⑪增加点击曲线的交互效果,第20、21、22行使用line()方法绘制3条曲线;第26行定义曲线再次被点击时的效果:图11中左下方会动态显示当前选中的是哪条颜色的曲线
本文将介绍如何使用 Bokeh 库在 Python 中创建动态数据可视化,并提供代码示例以供参考。...Bokeh 的一个主要优势是它能够在浏览器中直接渲染图形,使得生成的图表可以轻松地与用户交互,并支持大规模数据集的可视化。安装 Bokeh首先,你需要安装 Bokeh 库。...你可以通过 pip 包管理器来安装:pip install bokeh创建动态数据可视化下面是一个简单的示例,演示了如何使用 Bokeh 创建一个动态的折线图,随着时间的推移不断更新数据。...当按钮的标签为“暂停”时,点击按钮将移除定时器回调函数,使得数据更新暂停;当按钮的标签为“继续”时,点击按钮将重新添加定时器回调函数,继续数据更新。...通过选择不同的颜色,用户可以更直观地区分不同的数据点。通过 Bokeh 的强大功能和灵活性,你可以根据具体需求添加更多元素和控件,定制出更丰富、更具交互性的动态数据可视化。
ImageDraw ImageDraw 模块为Image模块提供了简单的2D图形,利用该模块可以创建新图形,修饰现有图形,然后生成新的图形以供使用 下面就详细介绍下各个模块的 Image Image是...如果它包含任何换行符,则文本将传递给 multiline_text()。fill- 用于文本的颜色。font- 一个ImageFont实例。 anchor—— 文本锚对齐方式。...align- 如果文本被传递到 multiline_text(), "left","center"或"right"。确定线条的相对对齐方式。使用anchor参数指定对齐到xy。...要获取所有支持的功能,请参阅OpenType 文档。需要 libraqm。 language—— 文本的语言。不同的语言可能使用不同的字形形状或连字。...stroke_fill – 用于文本笔划的颜色。如果没有给出,将默认为fill参数。 embedded_color– 是否使用字体嵌入颜色字形(COLR、CBDT、SBIX)。
Bokeh Bokeh 很美。从概念上讲,Bokeh 类似于 ggplot,它们都是用图形语法来构建图片,但 Bokeh 具备可以做出专业图形和商业报表且便于使用的界面。...这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。...下图展示了一些随机趋势,其自定义程度更高:使用了图例和不同的颜色和线条。 ? Bokeh 还是制作交互式商业报表的绝佳工具。...我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。...希望阅读本文后,你可以了解到在不同的情境下,该如何使用不同的美化工具和代码。
05 Bokeh Bokeh 很美。从概念上讲,Bokeh 类似于 ggplot,它们都是用图形语法来构建图片,但 Bokeh 具备可以做出专业图形和商业报表且便于使用的界面。...这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。...下图展示了一些随机趋势,其自定义程度更高:使用了图例和不同的颜色和线条。 ? Bokeh 还是制作交互式商业报表的绝佳工具。...我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。...希望阅读本文后,你可以了解到在不同的情境下,该如何使用不同的美化工具和代码。
02.Bokeh Bokeh 很美。从概念上讲,Bokeh 类似于 ggplot,它们都是用图形语法来构建图片,但 Bokeh 具备可以做出专业图形和商业报表且便于使用的界面。...这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。...下图展示了一些随机趋势,其自定义程度更高:使用了图例和不同的颜色和线条。 ? Bokeh 还是制作交互式商业报表的绝佳工具。...我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。...希望阅读本文后,你可以了解到在不同的情境下,该如何使用不同的美化工具和代码。 ?
安装 在python中有多种安装Bokeh的方法,这里建议最简单的方法是使用Anaconda Python发行版,然后在命令行下输入以下命令: conda install bokeh 这里会安装Bokeh...notebook是用于数据探索的常用工具,在数据科学领域被广泛使用,建议大家在学习Bokeh的过程中使用jupyter notebook。...开始绘图 Bokeh是一个大型库,具有非常多的功能,这里不细讲具体函数方法,只通过一些案例来展示Bokeh的使用流程和可视化界面。...一般来说,我们使用bokeh.plotting模块绘图有以下几个步骤: 准备数据 例子中数据容器为列表,你也可以用numpy array、pandas series数据形式 告诉Bokeh在哪生成输出图表...调用figure()函数 创建具有典型默认选项并易于自定义标题、工具和轴标签的图表 添加渲染器 上面使用的是line()线图函数,并且指定了数据源、线条样式、标签等,你也可以使用其他的绘图函数,如点图、
从概念上讲,Bokeh 类似于 ggplot,它们都是用图形语法来构建图片,但 Bokeh 具备可以做出专业图形和商业报表且便于使用的界面。...在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。 用 Pandas 表示相同的数据 蓝色的图是上面的第 17 行代码。这两个直方图的值是一样的,但目的不同。...下图展示了一些随机趋势,其自定义程度更高:使用了图例和不同的颜色和线条。 Bokeh 还是制作交互式商业报表的绝佳工具。...我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。...有很多数据可视化的包,但没法说哪个是最好的。希望阅读本文后,你可以了解到在不同的情境下,该如何使用不同的美化工具和代码。
因此,每一种方法产生的美感都是相似的,定制图片的方法将使用非常相似的语法。 当我想到这些可视化工具时,我想到:探索性数据分析。这些包对于第一次查看您的数据是非常棒的,但是当涉及到表示时就不太好了。...下面是一些使用Matplotlib和它的近亲制作的图的例子: 在处理篮球薪资数据时,我希望找到拥有最高薪资中位数数据的球队。...当制作漂亮的,像样的图形时,我非常倾向于Bokeh -很多美学工作已经为我们做了! 上面的蓝色图是上面要点的第17行上的一行代码。这两个直方图具有相同的值,但用途不同。...下图显示了一些随机的趋势,使用了更多的自定义图例和不同的线条类型和颜色: 最后提一下,Bokeh也是一个制作交互式仪表板的好工具。...我创建了一个没有轴标签的条形图和一个“散点图”,其中的线条我无法删除。
本文将重点比较Bokeh和Altair这两个常用的Python数据可视化库,探讨它们的优缺点以及在不同场景下的适用性。...使用Bokeh的circle方法添加散点数据,并指定图例标签、颜色和大小。 最后调用show函数显示图表。...from bokeh.transform import factor_cmap: 从 Bokeh 库中导入用于颜色映射的转换函数。...添加条形图: 使用 vbar() 方法向绘图对象添加条形图,指定了 x 值(产品名称)、条形的高度(销售量)、线条颜色、填充颜色等属性。...添加悬停工具: 使用 add_tools() 方法向绘图对象添加悬停工具,指定了悬停时显示的信息,包括产品名称、销售量和收入。
图表元素设置 图表元素设置主要是指 数据源选择、图大小、标题、坐标轴文字、图例、网格线、图颜色、字体大小、线条样式、色系、多子图、图形叠加与绘图引擎等等。...df.a.plot.bar() df.b.plot(color='r') 绘图引擎 通过backend可以指定不同的绘图引擎,目前默认是matplotlib,还支持bokeh、plotly、Altair...当然,在使用新的引擎前需要先安装对应的库。...# 绘图引擎 import pandas_bokeh pandas_bokeh.output_notebook() df.plot.bar(backend='pandas_bokeh') # 绘图引擎...=[1, 4, 5, 6, 8]) 面积图 面积图又称区域图,是将折线图与坐标轴之间的区域使用颜色填充,填充颜色可以很好地突出趋势信息,一般颜色带有透明度会更合适于观察不同序列之间的重叠关系。
图表元素设置 图表元素设置主要是指 数据源选择、图大小、标题、坐标轴文字、图例、网格线、图颜色、字体大小、线条样式、色系、多子图、图形叠加与绘图引擎等等。...除了在绘图时定义图像大小外,我们还可以通过matplotlib的全局参数设置图像大小 plt.rcParams['figure.figsize'] = (10,5) 标题 通过参数title设置图表标题...绘图引擎 通过backend可以指定不同的绘图引擎,目前默认是matplotlib,还支持bokeh、plotly、Altair等等。当然,在使用新的引擎前需要先安装对应的库。...直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大。...面积图 面积图又称区域图,是将折线图与坐标轴之间的区域使用颜色填充,填充颜色可以很好地突出趋势信息,一般颜色带有透明度会更合适于观察不同序列之间的重叠关系。
01 概述 直方图(Histogram),形状类似柱状图却有着与柱状图完全不同的含义。直方图牵涉统计学概念,首先要对数据进行分组,然后统计每个分组内数据元的数量。...组数:在统计数据时,我们把数据按照不同的范围分成几个组,分成的组的个数称为组数。 组距:每一组两个端点的差。 频数:分组内数据元的数量除以组距。 02 实例 直方图代码示例如下所示。...▲图2-59 代码示例2-45运行结果 代码示例2-45第2行使用quad ()方法通过定义矩形的四边边界绘制直方图,具体参数说明如下。...alpha (float) : 一次性设置所有线条的透明度 color (Color) : 一次性设置所有线条的颜色 source (ColumnDataSource) : Bokeh特有数据格式(类似于...延伸阅读《Python数据可视化》 点击上图了解及购买 转载请联系微信:DoctorData 推荐语:从图形绘制、数据动态展示、Web交互等维度全面讲解Bokeh功能和使用,不含复杂数据处理和算法,深入浅出
3.从前景色中选择几种“代表性颜色”,作为生成PNG过程中需要的索引色。 在深入研究这些步骤之前,先来了解下彩色图像是如何以数字形式进行存储的。...如果使用这种方法,就无法有效分离出粉红色的前景色,因为总会包含渗过来的深灰色。...,第二条标准则可以分离出红色墨迹和粉色线条,且这两个标准在选取前景色时排除了笔记反面渗透过来的灰色。...第一个输出的PDF使用默认的阈值设置,看起来很棒: 不同颜色簇的可视化: 由three.js提供支持的交互式三维图 第二个PDF需要将饱和度阈值降低到0.045,因为蓝灰色的线条颜色太深不便于阅读: 对应的颜色簇...你也可以尝试使用最大期望算法来生成描述颜色分布的高斯混合模型——不确定之前是否有人做过类似的实现。
Bokeh简介Bokeh是一个用于创建交互式可视化的Python库,它能够生成具有高度交互性的图表和应用程序,支持在Web浏览器中显示。...设置Bokeh图表:接下来,我们使用Bokeh库创建一个图表对象。可以选择不同类型的图表,如折线图、散点图等,以展示数据的趋势和模式。...交互性Bokeh支持丰富的交互功能,包括缩放、平移、工具栏等,使用户可以自由探索数据。例如,我们可以添加工具栏,允许用户选择不同的图表类型、保存图表或将其导出为图片。...这在比较不同数据集之间的关系时非常有用。....x_rangeplot1.y_range = plot2.y_range自定义样式通过Bokeh的样式设置,我们可以轻松地自定义图表的外观,包括颜色、线条样式、标签等,使其与应用程序或网站的整体风格保持一致
领取专属 10元无门槛券
手把手带您无忧上云