混淆矩阵是一个表,经常用来描述分类模型(或“分类器”)在已知真实值的一组测试数据上的性能。混淆矩阵本身比较容易理解,但是相关术语可能会令人混淆。...让我们从一个二进制分类器的混淆矩阵示例开始(尽管它可以很容易地扩展到两个以上的类): ? 我们能从这个矩阵中了解到什么? 有两种可能的预测类:“yes”和“no”。...(也称为“第一类错误”。) false negatives (FN): 我们预测“no”,但他们确实有这种疾病。(也称为“第二类错误”。) 我已经将这些项添加到混淆矩阵中,并且添加了行和列总数: ?...这是一个比率的列表,通常是从一个混淆矩阵的二元分类器里得出: 准确率(Accuracy):总的来说,分类器的准确率是多少?...然而,对于一个特定的应用程序,最好的分类器有时会有比零错误率更高的错误率,正如 “Accuracy Paradox(精确度悖论)”所证明的那样。
然后,我们会看到如何使用这个预测张量,以及每个样本的标签,来创建一个混淆矩阵。这个混淆矩阵将允许我们查看我们的网络中哪些类别相互混淆。...混淆矩阵要求 要为整个数据集创建一个混淆矩阵,我们需要一个与训练集长度相同的一维预测张量。...在我们得到这个张量之后,我们可以使用标签张量来生成一个混淆矩阵。 > len(train_set.targets) 60000 一个混淆矩阵将告诉我们模型在哪里被混淆了。...更具体地说,混淆矩阵将显示模型正确预测的类别和模型不正确预测的类别。对于不正确的预测,我们将能够看到模型预测的类别,这将告诉我们哪些类别使模型混乱。...解释混淆矩阵 混淆矩阵具有三个轴: 预测标签(类) 真实标签 热图值(彩色) 预测标签和真实标签向我们显示了我们正在处理的预测类。
在机器学习中,最后要计算混淆矩阵,常用的函数有: table confusionMatrix 下面以前馈神经网络为例来说明: > library("RSNNS") 载入需要的程辑包:Rcpp >...2.318266 iter 190 value 2.318228 iter 200 value 2.318209 final value 2.318200 converged > > #####预测和混淆矩阵
在机器学习中,混淆矩阵可以可视化预测的结果情形。即可以方便的看出模型是否将集中不同的类混淆。...", "ant", "cat"] confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"]) # labels可以按照想要的顺序输出矩阵
一句话解释版本:混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来。这个表就是混淆矩阵。数据分析与挖掘体系位置混淆矩阵是评判模型结果的指标,属于模型评估的一部分。...在分类型模型评判的指标中,常见的方法有如下三种:混淆矩阵(也称误差矩阵,Confusion Matrix)ROC曲线AUC面积本篇主要介绍第一种方法,即混淆矩阵,也称误差矩阵。...混淆矩阵的定义混淆矩阵的定义混淆矩阵(Confusion Matrix),它的本质远没有它的名字听上去那么拉风。矩阵,可以理解为就是一张表格,混淆矩阵其实就是一张表格而已。...(Type I Error) 真实值是negative,模型认为是positive的数量(False Positive=FP):这就是统计学上的第二类错误(Type II Error) ...混淆矩阵的实例当分类问题是二分问题是,混淆矩阵可以用上面的方法计算。当分类的结果多于两种的时候,混淆矩阵同时适用。
本文目录 什么是混淆矩阵 混淆矩阵有关的三级指标 2.1 一级指标 2.2 二级指标 2.3 三级指标 计算混淆矩阵的实例 用Python计算混淆矩阵并图形展示 4.1 加载包 4.2 加载数据 4.3...定义绘制混淆矩阵的函数 4.4 绘制单个混淆矩阵 4.5 设定不同的阈值一次绘制多个混淆矩阵 一、什么是混淆矩阵 ?...混淆矩阵是用于评价分类模型效果的NxN矩阵,其中N是目标类别的数目。矩阵将实际类别和模型预测类别进行比较,评价模型的预测效果。...将这四个指标统计到一个矩阵表格中,就得到了混淆矩阵(Confusion Matrix)。 ?...三、计算混淆矩阵的实例 ? 当分类问题是多分类时,只要把其中一类当成一组,另外的所有类当成另一组,就可以转化成二分类问题,接下来讲一个二分类计算混淆矩阵三级指标的具体实例。
其中矩阵的行表示真实值,矩阵的列表示预测值,下面我们先以二分类为例,看下矩阵表现形式,如下: 二分类混淆矩阵 现在我们举个列子,并画出混淆矩阵表,假如宠物店有10只动物,其中6只狗,4只猫,现在有一个分类器将这...10只动物进行分类,分类结果为5只狗,5只猫,那么我们画出分类结果混淆矩阵,并进行分析,如下(我们把狗作为正类): 猫狗分类混淆矩阵 通过混淆矩阵我们可以轻松算的真实值狗的数量(行数量相加)为6=5+...刚才分析的是二分类问题,那么对于多分类问题,混淆矩阵表示的含义也基本相同,这里我们以三类问题为例,看看如何根据混淆矩阵计算各指标值。...多分类混淆矩阵 与二分类混淆矩阵一样,矩阵行数据相加是真实值类别数,列数据相加是分类后的类别数,那么相应的就有以下计算公式; 精确率_类别1=a/(a+d+g) 召回率_类别1=a/(a+b+c) Python...这里我们用代码演示三分类问题混淆矩阵(这里我们用confusion_matrix生成矩阵数据,然后用seaborn的热度图绘制出混淆矩阵数据),如下: #导入依赖包 import seaborn as
来源: DeepHub IMBA本文约1000字,建议阅读5分钟本文讨论了如何在多分类中使用混淆矩阵评估模型的性能。 什么是混淆矩阵? 它显示了实际值和预测值之间的差异。...对于多分类来说,它是一个 N * N 矩阵,其中 n 是编号。输出列中的类别,也称为目标属性。一二分类任务中包含了 2 个类也就是一个 2*2 矩阵,一般情况下介绍混淆矩阵都会以二分类为例。...那么将得到一个 3*3 矩阵依此类推。通过上面描述我们知道,混淆矩阵的类将具有相同数量的行和列。...我们将使用一个 3 x 3 矩阵,我们将使用我将向您展示的技巧计算 TP、TN、FP、FN 值。这个技巧也可以应用于 4*4、5*5…N*N 矩阵。...考虑这个混淆矩阵在下图 1 中的数据集的输出列中具有 A、B、C 类。
什么是混淆矩阵 混淆矩阵是机器学习中总结分类模型预测结果的情形分析表,以矩阵形式将数据集中的记录按照真实的类别与分类模型作出的分类判断两个标准进行汇总。...这个名字来源于它可以非常容易的表明多个类别是否有混淆(也就是一个class被预测成另一个class) 如下图: ? 其中绿色部分是预测正确的,红色是预测错误的。...Python混淆矩阵的使用 confusion_matrix函数的使用 官方文档中给出的用法是 sklearn.metrics.confusion_matrix(y_true, y_pred, labels
混淆矩阵(Confusion Matrix)是机器学习中用来总结分类模型预测结果的一个分析表,是模式识别领域中的一种常用的表达形式。...它以矩阵的形式描绘样本数据的真实属性和分类预测结果类型之间的关系,是用来评价分类器性能的一种常用方法。 我们可以通过一个简单的例子来直观理解混淆矩阵。...cat", "cat", "ant", "cat"] #预测 y_true=["cat", "ant", "cat", "cat", "ant", "bird"] #真实 下图便是上面给出数据的混淆矩阵...混淆矩阵的每一行数据之和代表该类别的真实的数目,每一列之和代表该类别的预测的数目,矩阵的对角线上的数值代表被正确预测的样本数目。 那么这个混淆矩阵是如何绘制的呢?...这里给出两种简单的方法,一是使用seaborn的热力图来绘制,可以直接将混淆矩阵可视化; C=confusion_matrix(y_true, y_pred, labels=["ant", "bird"
放到混淆矩阵中就是对角线上的像元数总和除以总像元数目。 02 生产者精度 生产者精度,也称制图精度,指相对于检验数据中的任意一个随机样本,分类图上相同位置的分类结果与其相一致的概率。...放到混淆矩阵中,就是分类器将整幅影像正确分类为A的像元数(对角线上A类的值)与真实情况下A的像元数(真实情况A的像元数总和)之比。...放到混淆矩阵中,是分类器将整幅影像正确分类为A的像元数和(对角线上A类的值)与分类器分出的所有A类像元数(预测值为A的像元数总和)之比。...放到混淆矩阵中就是真实情况为A类的像元数中有多少像元数被分类器分为了别的类别。...同样,漏分误差+生产者精度=1. 06 kappa系数 1 ---概念 基于混淆矩阵,我们可以计算出kappa系数,用于检验一致性或衡量分类精度。
前言 相信做过app的同学对代码混淆应该不陌生吧,如果陌生就自行百度,这里不做普及。我们先思考一个问题,如果我们把代码混淆了,如果出错了怎么定位问题?...答案非常简单,只要稍微实践下你就明白了,下面就是给你整理的对混淆代码错误堆栈还原的方法。 如何混淆?...Android Studio实现混淆很简单,只需要在build.gradle进行如下配置即可: buildTypes { release { minifyEnabled...,它里面存放着源码到混淆之后的代码的映射信息,这个文件是在我们执行proguard之后产生的,产生的位置如下图所示: ?...我们获取知识都是先从问为什么开始,本篇文章讲的只是开发中的一个解决问题的技巧,但你想想如果有很多这种混淆的异常,难道你要一个一个去看,拜托太低效啦。
分类模型的评估指标有很多,今天小编给大家准备的是混淆矩阵。 简介 首先我们来解释一下什么是分类模型的评估指标。...我们今天介绍的混淆矩阵就是一个图表形式的指标。...,但真实情况为正的样本数量,亦称漏报,是统计学中的第二类错误; TN:模型预测值为负,真实情况亦为负的样本数量。...02 样本二级指标 混淆矩阵统计的是样本在各个一级指标的数量。...特异度:TN/(TN+FP)=53/(53+20)≈73% 3 ---三级指标 F1 Score=2PR/(P+R)=(2*0.5*0.74)/(0.5+0.74) ≈0.6 以上就是在机器学习领域中的混淆矩阵及它所引申出的几个评估指标
ROC曲线的横坐标为false positive rate(FPR),纵坐标为true positive rate(TPR) 混淆矩阵 接下来这张图是混淆矩阵。...②(1,0),即FPR=1,TPR=0,这个点的预测全部错误。
从一篇论文——融合注意力机制和高效网络的糖尿病视网膜病变识别与分类,看到人家除了特异性、敏感性、准确率、混淆矩阵以外,还用了加权kappa系数,所以了解一下kapp系数的知识,加权kappa还没找到更好的资料...资料来源于百度百科词条——kappa系数 Kappa系数用于一致性检验,也可以用于衡量分类精度,但kappa系数的计算是基于混淆矩阵的. kappa系数是一种衡量分类精度的指标。...它是通过把所有地表真实分类中的像元总数(N)乘以混淆矩阵对角线(Xkk)的和,再减去某一类地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果,再除以总像元数的平方减去某一类地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果所得到的...计算公式 示例(这里的混淆矩阵用百度词条里的,但是好像我常用的是实际是下标,预测类别是上标,注意一下) 为了计算方便看懂,我重画了一下 结果分析 kappa计算结果为-1-1,但通常...,bC %在百度词条里的图中,真实样本数就是按列求值,预测出来的样本就是按行求值 %这里按照kappa系数百度词条里的图来计算,但是我一般用的混淆矩阵图是反过来的。。。这里不管了。。。
双折线点击一个,另一显示a b 错误.PNG 正确.PNG 隐藏一条线 tooltip: { // 气泡 trigger: "axis",...坐标轴触发有效 type: "shadow" // 默认为直线,可选为:'line' | 'shadow' } }, 修改后显示
混淆矩阵大家应该都不陌生,但是3d版的混淆矩阵你见过吗?...今天的3d版混淆矩阵来自一位粉丝求助,图形如下: doi:10.1007/s12072-021-10188-5 千万不要被这个图难住了,它其实非常简单,你把它的z轴去掉,看看是不是就是普通的混淆矩阵?...3d柱状图嘛 我们就用这篇推文中的混淆矩阵为例:ROC阳性结果还是阴性结果?...如果要可视化混淆矩阵,简单的2维非常简单,比如用ggplot2即可: library(tidyverse) ggplot(df1, aes(pred, outcome))+ geom_tile(...3d版混淆矩阵可视化 也是很简单,使用barplot3d这个包即可。 library(barplot3d) 注意这个包画图的顺序:从左到右,从前到后!
1.混淆矩阵 混淆矩阵是机器学习中总结分类模型预测结果的情形分析表,以矩阵形式将数据集中的记录按照真实的类别与分类模型作出的分类判断两个标准进行汇总。...这个名字来源于它可以非常容易的表明多个类别是否有混淆(也就是一个class被预测成另一个class) 下图是混淆矩阵的一个例子 ?...其中灰色部分是真实分类和预测分类结果相一致的,绿色部分是真实分类和预测分类不一致的,即分类错误的。
本节课就给大家详细讲解分类模型中常用的模型评价方法--混淆矩阵、ROC曲线与AUC。 ...混淆矩阵 我们以常见的二分类问题为例,假设模型预测为正例记为1(positive),反例记为0(negative),那么我们可以根据实际情况与模型预测情况得到以下一张表格,它就是我们常说的混!淆!...那么,对应到混淆矩阵中,就是希望TP与TN对应位置的数值越大越好,而FP与FN对应位置的数值越小越好。...score = 2*P*R/(P + R) (P代表精确率,R代表召回率) 注:1、以上几个指标范围在0-1之间,数值越大表示相应结果越好; 2、精确率是针对预测结果而言的,召回率是针对实际结果而言的; 3、混淆矩阵也可以用作多分类问题...ok,到这里混淆矩阵、ROC曲线与AUC你都懂了吗?不懂就慢慢消化吧。下节课给大家带来更刺激的SVM,敬请期待~
精确率与召回率 ---- 精确率(Precision)与召回率(Recall)是分类任务中的常用指标,首先需要知道混淆矩阵。...True Positive,TP) 假反例(False Negative,FN) 假正例(False Positive,FP) 真反例(True Negative,TN) 显然,四者之和等于样例总数,混淆矩阵如下...推广到多分类任务中,由于混淆矩阵是对应正反两个类别的,而多分类中类别大于2。使用组合,将组合中每两个类别生成一个对应矩阵,并计算F1,最后再计算所有F1的平均值,得到宏F1(macro-F1)。...from sklearn.metrics import roc_auc_score print(roc_auc_score(y_test, y_pred)) 混淆矩阵 ---- 将上述二分类中的混淆矩阵应用到多分类任务中...plt.title('混淆矩阵') # 图名 plt.xlabel('预测类别') # x轴名 plt.ylabel('真实类别') # y轴名 plt.gca().xaxis.set_label_position
领取专属 10元无门槛券
手把手带您无忧上云