首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

【计算机本科补全计划】指令:计算机的语言(MIPS) Part3

正文之前 今天学的很尴尬,因为有事情,而且新认识了两个计算机学院的保研大佬,不得不感叹我找的导师之强,第一个去上交的,是被金老师推荐去的,听说是跟了目前亚洲第一人的一个做计算机系统的人,例外一个小大佬居然也是直接跟的金老师。。也就是说我们以后是同门。 前面随便问问计算机学院的情况: 学长:我有个高中同学在金老师手下念博士生,我帮你问问。。。; 学姐:我有个大学同学在金老师实验室读研究生,我给你推荐好友哈。。。; 大佬:金老师是我的助班和学业导师,他人很好的。。。; 小大佬:金老师跟我说还不急着选方向,

08

基于粒子群优化算法的函数寻优算法研究_matlab粒子群优化算法

粒子群算法(particle swarm optimization,PSO)是计算智能领域一种群体智能的优化算法。该算法最早由Kennedy和Eberhart在1995年提出的。PSO算法源于对鸟类捕食行为的研究,鸟类捕食时,找到食物最简单有效的策略就是搜寻当前距离食物最近的鸟的周围区域。PSO算法就是从这种生物种群行为特征中得到启发并用于求解优化问题的,算法中每个粒子都代表问题的一个潜在解,每个粒子对应一个由适应度函数决定的适应度值。粒子的速度决定了粒子移动的方向和距离,速度随自身及其他粒子的移动经验进行动态调整,从而实现个体在可解空间中的寻优。 假设在一个 D D D维的搜索空间中,由 n n n个粒子组成的种群 X = ( X 1 , X 2 , ⋯   , X n ) \boldsymbol{X}=(X_1,X_2,\dotsm,X_n) X=(X1​,X2​,⋯,Xn​),其中第 i i i个粒子表示为一个 D D D维的向量 X i = ( X i 1 , X i 2 , ⋯   , X i D ) T \boldsymbol{X_i}=(X_{i1},X_{i2},\dotsm,X_{iD})^T Xi​=(Xi1​,Xi2​,⋯,XiD​)T,代表第 i i i个粒子在 D D D维搜索空间中的位置,亦代表问题的一个潜在解。根据目标函数即可计算出每个粒子位置 X i \boldsymbol{X_i} Xi​对应的适应度值。第 i i i个粒子的速度为 V = ( V i 1 , V i 2 , ⋯   , V i D ) T \boldsymbol{V}=(V_{i1},V_{i2},\dotsm,V_{iD})^T V=(Vi1​,Vi2​,⋯,ViD​)T,其个体最优极值为 P i = ( P i 1 , P i 2 , ⋯   , P i D ) T \boldsymbol{P_i}=(P_{i1},P_{i2},\dotsm,P_{iD})^T Pi​=(Pi1​,Pi2​,⋯,PiD​)T,种群的群体最优极值为 P g = ( P g 1 , P g 2 , ⋯   , P g D ) T \boldsymbol{P_g}=(P_{g1},P_{g2},\dotsm,P_{gD})^T Pg​=(Pg1​,Pg2​,⋯,PgD​)T。 在每次迭代过程中,粒子通过个体极值和群体极值更新自身的速度和位置,即 V i d k + 1 = ω V i d k + c 1 r 1 ( P i d k − X i d k ) + c 2 r 2 ( P g d k − X i d k ) (1) V_{id}^{k+1}=\omega V_{id}^k+c_1r_1(P_{id}^k-X_{id}^k)+c_2r_2(P_{gd}^k-X_{id}^k)\tag{1} Vidk+1​=ωVidk​+c1​r1​(Pidk​−Xidk​)+c2​r2​(Pgdk​−Xidk​)(1) X i d k + 1 = X i d k + V k + 1 i d (2) X_{id}^{k+1}=X_{id}^k+V_{k+1_{id}}\tag {2} Xidk+1​=Xidk​+Vk+1id​​(2)其中, ω \omega ω为惯性权重; d = 1 , 2 , ⋯   , n d=1,2,\dotsm,n d=1,2,⋯,n; k k k为当前迭代次数; V i d V_{id} Vid​为粒子的速度; c 1 c_1 c1​和 c 2 c_2 c2​是非负的常数,称为加速度因子; r 1 r_1 r1​和 r 2 r_2 r2​是分布于 [ 0 , 1 ] [0,1] [0,1]区间的随机数。为防止粒子的盲目搜索,一般建议将其位置和速度限制在一定的区间 [ − X m a x , X m a x ] [-X_{max},X_{max}] [−Xmax​,Xmax​]、 [ − V m a x , V m a x ] [-V_{max},V_{max}] [−Vmax​,Vmax​]。

03

linux内核升级图文攻略 转

一、Linux内核概览 Linux是一个一体化内核(monolithic kernel)系统。 设备驱动程序可以完全访问硬件。 Linux内的设备驱动程序可以方便地以模块化(modularize)的形式设置,并在系统运行期间可直接装载或卸载。 1. linux内核 linux操作系统是一个用来和硬件打交道并为用户程序提供一个有限服务集的低级支撑软件。 一个计算机系统是一个硬件和软件的共生体,它们互相依赖,不可分割。 计算机的硬件,含有外围设备、处理器、内存、硬盘和其他的电子设备组成计算机的发动机。 但是没有软件来操作和控制它,自身是不能工作的。 完成这个控制工作的软件就称为操作系统,在Linux的术语中被称为“内核”,也可以称为“核心”。 Linux内核的主要模块(或组件)分以下几个部分: . 进程管理(process management)  . 定时器(timer) . 中断管理(interrupt management) . 内存管理(memory management) . 模块管理(module management) . 虚拟文件系统接口(VFS layer) . 文件系统(file system) . 设备驱动程序(device driver) . 进程间通信(inter-process communication) . 网络管理(network management . 系统启动(system init)等操作系统功能的实现。 2. linux内核版本号 Linux内核使用三种不同的版本编号方式。 . 第一种方式用于1.0版本之前(包括1.0)。   第一个版本是0.01,紧接着是0.02、0.03、0.10、0.11、0.12、0.95、0.96、0.97、0.98、0.99和之后的1.0。 . 第二种方式用于1.0之后到2.6,数字由三部分“A.B.C”,A代表主版本号,B代表次主版本号,C代表较小的末版本号。   只有在内核发生很大变化时(历史上只发生过两次,1994年的1.0,1996年的2.0),A才变化。   可以通过数字B来判断Linux是否稳定,偶数的B代表稳定版,奇数的B代表开发版。C代表一些bug修复,安全更新,新特性和驱动的次数。   以版本2.4.0为例,2代表主版本号,4代表次版本号,0代表改动较小的末版本号。   在版本号中,序号的第二位为偶数的版本表明这是一个可以使用的稳定版本,如2.2.5;   而序号的第二位为奇数的版本一般有一些新的东西加入,是个不一定很稳定的测试版本,如2.3.1。   这样稳定版本来源于上一个测试版升级版本号,而一个稳定版本发展到完全成熟后就不再发展。 . 第三种方式从2004年2.6.0版本开始,使用一种“time-based”的方式。   3.0版本之前,是一种“A.B.C.D”的格式。   七年里,前两个数字A.B即“2.6”保持不变,C随着新版本的发布而增加,D代表一些bug修复,安全更新,添加新特性和驱动的次数。   3.0版本之后是“A.B.C”格式,B随着新版本的发布而增加,C代表一些bug修复,安全更新,新特性和驱动的次数。   第三种方式中不使用偶数代表稳定版,奇数代表开发版这样的命名方式。   举个例子:3.7.0代表的不是开发版,而是稳定版! linux内核升级时间图谱如下:

05
领券