首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Domain Adaptation:缺少有监督数据场景下的迁移学习利器

说起Domain Adaptation,首先要从迁移学习说起。迁移学习主要解决的是将一些任务(source domain)上学到的知识迁移到另一些任务(target domain)上,以提升目标任务上的效果。当目标任务有较充足的带标签样本时,迁移学习有多种实现方法。例如,采用Pretrain-Finetune的方式,先在源任务上Pretrain,再在目标任务上用一定量的数据Finetune;或者利用Multi-task Learning的方式,多个任务联合训练。然而,当目标任务没有带标签的数据,或者只有非常少量的带标签样本时,上述两种方法就无法采用了。因此,Domain Adaptation应蕴而生,主要解决目标任务没有数据或数据量非常少无法训练模型的场景。

01
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到
    领券