使用ps命令查看进程的内存使用情况时,有3列输出,分别是%MEM、VSZ和RSS,其中VSZ全称为Virtual Memory Size,RSS全称为Resident Set Size,而MEM则是RSS占全部内存的百分比。
在 Linux 下 free 命令可以看出系统当前内存状况,附上 -k , -m , -g 可以分别输出对应单位的内存状况:
为了提高 php 服务器性能,安装宝塔面板的服务器需要设置一下。整个设置过程很简单,魏艾斯博客把如何设置宝塔面板提高服务器性能的过程写下来,希望能帮到初次使用宝塔面板的朋友们。
以下命令会将文本This is a test text.输出重定向到文件test.txt中,如果文件已存在,将会覆盖文件内容,如果不存在则创建。其中>符号表示输出重定向。
「 原谅和忘记就意味着扔掉了我们获得的最贵经验 -------《人生的智慧》叔本华」
2020-09-05:虚拟内存知道么?什么时候使用虚拟内存?虚拟内存除了扩大内存还有什么用?
前不久组内又有一次我比较期待的分享:“Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题。
毋庸置疑,虚拟内存是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。
毋庸置疑,虚拟内存绝对是操作系统中最重要的概念之一。我想主要是由于内存的重要”战略地位”。CPU太快,但容量小且功能单一,其他 I/O 硬件支持各种花式功能,可是相对于 CPU,它们又太慢。于是它们之间就需要一种润滑剂来作为缓冲,这就是内存大显身手的地方。
虚拟内存可以用来管理物理内存,进程直接和虚拟内存进行打交道而不是物理内存,为什么这样设计?
在 Linux 系统中,调用 fork 系统调用创建子进程时,并不会把父进程所有占用的内存页复制一份,而是与父进程共用相同的内存页,而当子进程或者父进程对内存页进行修改时才会进行复制 —— 这就是著名的 写时复制 机制。
来源 | https://zhenbianshu.github.io/ 前不久组内又有一次我比较期待的分享:”Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题(笑)。 之前了解一些操作系统的概念,主要是毕业后对自己大学四年的荒废比较懊恼,觉得自己有些对不起计算机专业出身,于是在工作之余抽出时间看了哈工大在网易云课堂的操作系统公开课,自己也读了一本讲操作系统比较浅的书 《Linux内核设计与实现》,而且去年自己用 C
在 《漫画解说内存映射》一文中介绍过 虚拟内存 与 物理内存 映射的原理与过程,虚拟内存与物理内存进行映射的过程被称为 内存映射。内存映射是硬件(内存管理单元)级别的功能,必须按照硬件的规范设置好内存映射的关系,进程才能正常运行。
虚拟内存是计算机系统内存管理的一种技术。它使得应用程序认为它拥有连续可用的内存(一个连续完整的地址空间),而实际上,它通常是被分隔成多个物理内存碎片,还有部分暂时存储在外部磁盘存储器上,在需要时进行数据交换。与没有使用虚拟内存技术的系统相比,使用这种技术的系统使得大型程序的编写变得更容易,对真正的物理内存(例如RAM)的使用也更有效率。
專 欄 ❈本文作者:王勇,目前感兴趣项目商业分析、Python、机器学习、Kaggle。17年项目管理,通信业干了11年项目经理管合同交付,制造业干了6年项目管理:PMO,变革,生产转移,清算和资产处理。MBA, PMI-PBA, PMP。❈ 这两天在忙着刷Kaggle梅塞德斯奔驰生产线测试案例,刚刚有了些思路,还是用管道方法达了个积木。这才有空开始写第二篇文章。(吐个槽,Kaggle上面的很多比赛,比的是财力。服务器内存不行,或者计算速度不够就是浪费时间。) 上回说道,用搭乐高积木的方式就可以多快好省的
在 NodeManager 中有一个Monitor线程,用于一直监控NodeManager的内存使用量,假设NodeManager 设置为3G,用于后面的资源(如 Kafka、Flume)的内存为1G;
当我们物理内存小的时候,会出现OOM,然后服务自动死掉的情况。因为物理内存大小是固定的,有没有其他好的办法来解决呢?这里我们可以适当调整Linux的虚拟内存来协作。
前不久组内又有一次我比较期待的分享:”Linux 的虚拟内存”。是某天晚上加班时,我们讨论虚拟内存的概念时,leader 发现几位同事对虚拟内存认识不清后,特意给这位同学挑选的主题(笑)。
我今天发现了这样的一个文件PageFile.Sys,它其实就是归操作系统管的,默认一点是不可见的,是隐藏的。但是其实这样的一个文件的话,其实会占用一部分空间。其实是比较大的。一般就是在系统分盘的根目录下。但是它占用大的空间的话,我还是不建议你去删除掉它。
这篇文章其实之前发过,但是最近有位读者跟我反馈,我文章中的实验在 64 位操作系统、2 G 物理内存的场景,申请 8G 内存是没问题的,而他也是这个环境,为什么他就无法申请成功呢?
其中,第一个问题「在 4GB 物理内存的机器上,申请 8G 内存会怎么样?」存在比较大的争议,有人说会申请失败,有的人说可以申请成功。
前几天我发了一篇文章:在 4GB 物理内存的机器上,申请 8G 内存会怎么样?,但是当时写的比较匆忙,文章中只考虑关闭 swap 的情况,没有提及开启 swap 的情况,有读者希望我补充这部分内容。
" 文件映射 " 的 " 虚拟内存区域 " vm_area_struct 结构体 的 数据结构表示形式如下 ;
为了防止不同进程同一时刻在物理内存中运行而对物理内存的争夺和践踏,采用了虚拟内存。
Android 系统上添加虚拟内存已经不是什么新鲜事了, 很多手机都支持, 通常都是将虚拟内存添加到 SD 卡上, 不过由于 SD 卡的的读写速度有速度限制, 再加上如果不是用高速的 SD 卡的话, 将虚拟内存添加到 SD 卡上的效果就不是很明显了, 其实还有一个地方可以添加虚拟内存, 那就是 /data 目录。 为什么把虚拟内存添加到 /data 目录呢, 原因如下:
内存是计算机中必不可少的资源,因为 CPU 只能直接读取内存中的数据,所以当 CPU 需要读取外部设备(如硬盘)的数据时,必须先把数据加载到内存中。
本文我们将进入到内核源码实现中,来看一下虚拟内存分配的过程,在这个过程中,我们还可以亲眼看到前面介绍的 mmap 内存映射原理在内核中具体是如何实现的,下面我们就从 mmap 系统调用的入口处来开始本文的内容:
计算机是用来执行简单任务的复杂机器:比如 上网、文本编辑、网页服务、视频游戏……,还可以对数据进行操作,图片 音乐 文本 数据库……
如果你的实际内存为4G,Windows就会自动建立约4G左右的虚拟内存文件在C盘,有些小伙伴的电脑最开始分区时,C盘没分多大,没用多久C盘空间就快满了,这时如果转移虚拟内存至其他盘的话,会节约出几个G的空间给C盘。
虚拟内存地址就好比每个班的学号,而物理内存地址就好比真实的学生。因为每个学号都对应不同的学生,所以虚拟内存地址也要映射到物理内存地址。
操作系统中所运行所有的程序全部都是经过内存提交给CPU然后才执行的,不过若是执行的程序占用内存很多或很大,则会导致内存消耗殆尽
物理内存就是你的机器本身内存了(如内存条的大小)。物理内存就是CPU的地址线可以直接进行寻址的内存空间大小。比如8086只有20根地址线,那么它的寻址空间就是1MB,我们就说8086能支持1MB的物理内存,及时我们安装了128M的内存条在板子上,我们也只能说8086拥有1MB的物理内存空间。同理我们现在大部分使用的是32位的机子,32位的386以上CPU就可以支持最大4GB的物理内存空间了。
究其原因,监控系统计算的可用内存算法有偏差,他只关注了计算机的“实际”内存,忽略了计算机的虚拟内存。
理解起来很简单,一个单通道,只能进行单向传输数据,要么就输出,要么输入。而双通道,则可以同时输出和输入。
thunk程序其实就是一段代码块,这段代码块可以在运行时动态构造也可以在编译时构造。thunk程序除了在第一篇文章中介绍的用途外还可以作为某些真实函数调用的跳板(trampoline)代码,以及解决一些函数参数不一致的调用对接问题。从设计模式的角度来讲thunk程序可以作为一个适配器(Adapter)。本文将重点介绍如何通过编译时的静态代码来实现thunk程序的方法,以便解决上一篇文章对于iOS系统下指令动态构造的约束限制的问题。
在介绍 HugePages 之前,我们先来回顾一下 Linux 下 虚拟内存 与 物理内存 之间的关系。
内存是计算机的主存储器。内存为进程开辟出进程空间,让进程在其中保存数据。我将从内存的物理特性出发,深入到内存管理的细节,特别是了解虚拟内存和内存分页的概念。
通过上篇文章 《从内核世界透视 mmap 内存映射的本质(原理篇)》的介绍,我们现在已经非常清楚了 mmap 背后的映射原理以及它的使用方法,其核心就是在进程虚拟内存空间中分配一段虚拟内存出来,然后将这段虚拟内存与磁盘文件映射起来,整个 mmap 系统调用就结束了。
虚拟内存是相对于物理内存的一种说法。那么什么是物理内存呢?顾名思义,插在主板上的内存条是多大,内存就是多大。
而虚拟内存归属于操作系统,是操作系统里面非常重要的一个概念,操作系统的主要作用有两个:
最近一直在做内存和 ANR 相关的优化,接下来我将会花几篇文章梳理一下内存相关的优化,以及我是如何将 OOM 崩溃率下降 90%。 今天这篇文章主要介绍内存相关的知识点,以及那些因素会导致 OOM 崩溃和相对应的解决方案,所以通过这篇文章你将学习到以下内容:
之前有不少读者给笔者留言,希望笔者写一篇文章介绍下 mmap 内存映射相关的知识体系,之所以迟迟没有动笔,是因为 mmap 这个系统调用看上去简单,实际上并不简单,可以说是非常复杂的一个系统调用。
https://man7.org/linux/man-pages/man2/mmap.2.html
作者:Vamei 出处:http://www.cnblogs.com/vamei 严禁转载
领取专属 10元无门槛券
手把手带您无忧上云