在工作中,有些场景下,我们需要对比两个完全一样对象的属性值是否相等。比如接口替换的时候,需要比较新老接口在相同情况下返回的数据是否相同。这个时候,我们怎么处理呢?...PropertyReflectUtil.getPropertyType(vo1,filed); log.info("filed:{},fieldType:{}",filed,fieldType); //比较不同...异常信息为:{}",e.getMessage(),e); } //不相同vo2就设置成自己的。...obj1Md5.equals(obj2Md5)){ log.info("不同,vo2的值就设置成自己的"); PropertyReflectUtil.setProperty...(vo2,filed,obj2); }else{ log.info("相同,vo2的值就设置成空");
问题 现有社保卡和身份证若干,想要匹配筛选出一一对应的社保卡和身份证。 转换为List socialList,和List idList,从二者中找出匹配的社保卡。...采用Hash 通过观察发现,两个list取相同的部分时,每次都遍历两个list。那么,可以把判断条件放入Hash中,判断hash是否存在来代替遍历查找。...如此推出这种做法的时间复杂度为O(m,n)=2m+n. 当然,更重要的是这种写法更让人喜欢,天然不喜欢嵌套的判断,喜欢扁平化的风格。...Hash一定会比遍历快吗 想当然的以为,hash肯定会比遍历快,因为是hash啊。其实,可以算算比较结果。比较什么时候2m+n 的对象。然而,大部分情况下,n也就是第二个数组的长度是大于3的。这就是为什么说hash要更好写。
1、获取数组相同元素 array_intersect()该函数比较两个(或更多个)数组的键值,并返回交集数组,该数组包括了所有在被比较的数组(array1)中, 同时也在任何其他参数数组(array2...(或更多个)数组的键名和键值,并返回交集,与 array_intersect() 函数 不同的是,本函数除了比较键值, 还比较键名。...> // Array ( [a] => red [b] => green [c] => blue/ / ) 2、获取数组中不同元素 array_diff() 函数返回两个数组的差集数组。...该数组包括了所有在被比较的数组中,但是不在任何其他参数数组中的键值。 在返回的数组中,键名保持不变。 <?..."blue"); $result=array_diff_assoc($a1,$a2); print_r($result); // Array ( [d] => yellow )/ / 以上这篇php 比较获取两个数组相同和不同元素的例子
文章目录 问题 代码 运行结果 问题 比较两个等长的字符串,若相同,则输出Match!,若不同,则输出No Match!
在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...每种方法都有其优点和缺点,因此应根据具体情况使用不同的方法。 点符号 可以键入“df.国家”以获得“国家”列,这是一种快速而简单的获取列的方法。但是,如果列名包含空格,那么这种方法行不通。...想想如何在Excel中引用单元格,例如单元格“C10”或单元格区域“C10:E20”。以下两种方法都遵循这种行和列的思想。 方括号表示法 使用方括号表示法,语法如下:df[列名][行索引]。...这有时称为链式索引。记住这种表示法的一个更简单的方法是:df[列名]提供一列,然后添加另一个[行索引]将提供该列中的特定项。 假设我们想获取第2行Mary Jane所在的城市。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?
如果我们有好几列有内容,而我们希望在新列中将有内容的列的标题显示出来,那么我们怎么做呢? Excel - TEXTJOIN function 1....Stackoverflow - Finding a specific value and returning column headers in Excel EXAMPLE: Indexing Year...所以我们后来改为TEXTJOIN函数,他可以显示值,也可以显示值的标题,还可以多个列有值的时候同时显示。...- - 4 - - - 15 Year 5 - - - - 5 - - - =TEXTJOIN(", ",TRUE,IF(ISNUMBER(B2:I2),$B$1:$I$1,"")) 如果是想要显示值,...则: =TEXTJOIN(", ",TRUE,IF(ISNUMBER(B2:I2),B2:I2,"")) 其中,ISNUMBER(B2:I2)是判断值是不是数字,可以根据情况改成是不是空白ISBLANK
不对,如果两个对象x和y满足x.equals(y) == true,它们的哈希码(hash code)应当相同。...Java对于eqauls方法和hashCode方法是这样规定的:(1)如果两个对象相同(equals方法返回true),那么它们的hashCode值一定要相同;(2)如果两个对象的hashCode相同,...当然,你未必要按照要求去做,但是如果你违背了上述原则就会发现在使用容器时,相同的对象可以出现在Set集合中,同时增加新元素的效率会大大下降(对于使用哈希存储的系统,如果哈希码频繁的冲突将会造成存取性能急剧下降...,多次调用x.equals(y)应该得到同样的返回值),而且对于任何非null值的引用x,x.equals(null)必须返回false。...不要将equals方法参数中的Object对象替换为其他的类型,在重写时不要忘掉@Override注解。
图1 在下图2所示的工作簿GetData.xlsm中,根据列C中的数据,在上图1的工作簿Data.xlsx的列E中查找是否存在相应数据的单元格。 ?...图2 然后,将Data.xlsx中对应行的列I至列K单元格中的数据复制到GetData.xlsm相应的单元格中,如下图3所示。 ?... 3 Then MsgBox ("请选择列C中的单元格或单元格区域.")...Exit Sub Else '遍历所选的单元格 For Each rng In Selection '在数据工作表中查找相应的值所在的单元格...注意,要使代码正常运行,应该将两个工作簿都打开。 代码的图片版如下: ?
给定一组 互不相同 的单词, 找出所有 不同 的索引对 (i, j),使得列表中的两个单词, words[i] + words[j] ,可拼接成回文串。...for i := 0; i < len(words); i++ { // i words[i] // findAll(字符串,在i位置,wordset) 返回所有生成的结果返回
有时候,一行数据中前面的数据值都是0,从某列开始就是大于0的数值,我们需要知道首先出现大于0的数值所在的单元格。...例如下图1所示,每行数据中非零值出现的位置不同,我们想知道非零值出现的单元格对应的列标题,即第3行中的数据值。 ?...图2 在公式中, MATCH(TRUE,B4:M40,0) 通过B4:M4与0值比较,得到一个TRUE/FALSE值的数组,其中第一个出现的TRUE值就是对应的非零值,MATCH函数返回其相对应的位置...MATCH函数的查找结果再加上1,是因为我们查找的单元格区域不是从列A开始,而是从列B开始的。...ADDRESS函数中的第一个参数值3代表标题行第3行,将3和MATCH函数返回的结果传递给ADDRESS函数返回非零值对应的标题行所在的单元格地址。
问题 大家好,我是数据里奥斯,今天有一段业务逻辑需要判断选择的时间范围不能超过3个月,这种常规的比较用moment.js的diff方法不是手到擒来么?...Return P1M30D 看完这一段,我豁然开朗,拿我们今天遇到的实际case,我讲一下他解释的这段原理到底是怎么实现的: diff算法是先加或者减每个整月一直到不能减,然后再看剩下的天数和当月比较的百分比...结论 所以,moment.js的diff方法在比较以天/月份/年份这样特殊粒度的单位时,都会优先按照整粒度扣除,剩下的小数部分,是根据子一级的粒度取当年/月/日为参照按比值算出的,这才有了这种A比B的值和...B比A的值竟然不一样的情况。...虽说一般来讲这个值多一点少一点不会有影响,毕竟我们是按找自己规定的粒度来比较的,但是这种原理能整明白,也不失为一种“学到了”的收获,嘿嘿 我是数据里奥斯~
求笛卡尔积 # 创建两个有不同索引、但包含一些相同值的Series In[17]: s1 = pd.Series(index=list('aaab'), data=np.arange(4))...、顺序也相同时,不会生成笛卡尔积;索引会按照它们的位置对齐。...# 再从baseball_15中选取一些列,有相同的、也有不同的 In[45]: df_15 = baseball_15[['AB', 'R', 'H', 'HR']] df_15....# 即便使用了fill_value=0,有些值也会是缺失值,这是因为一些行和列的组合根本不存在输入的数据中 In[47]: df_14.add(df_15, fill_value=0).head(10...,用eq方法比较DataFrame的每个值和该列的最大值 In[78]: college_n.eq(college_n.max()).head() Out[78]: ?
本文使用两个工具对同一数据源进行相同的处理,旨在通过对比的方式,帮助读者加深对数据透视表的理解。 数据源简介: 本文数据源来自网络,很多介绍pandas的文章都使用了该数据。...Python代码的部分,我都做了详细的注释,Excel操作流程我也做了比较详细的说明。后台回复“透视表”可以获得数据和代码。...2.Excel实现 在前面基础上,将Manager,Rep拉到“行”的位置即可。效果如下图,可以看到,在关键的数值上,两个结果是一致的,只是在形式上有所不同。 ?...2.Excel实现 Excel中只需要在上面的基础上,在“值”的地方删掉Account,Quality即可。效果如上图右侧图所示。...2.Excel 实现 只需在目标7的基础上,将Price和Quantity的值字段设置成相应的聚合方式即可。如下图所示。 ? 注:同一个字段可以用列表方式传多个函数。
仅支持数字索引,pandas的两种数据结构均支持标签索引,包括bool索引也是支持的 类比SQL的join和groupby功能,pandas可以很容易实现SQL这两个核心功能,实际上,SQL的绝大部分DQL...和xlsx两种格式均得到支持,底层是调用了xlwt和xlrd进行excel文件操作,相应接口为read_excel()和to_excel() SQL文件,支持大部分主流关系型数据库,例如MySQL,需要相应的数据库模块支持...切片类型与索引列类型不一致时,引发报错 loc/iloc,最为常用的两种数据访问方法,其中loc按标签值访问、iloc按数字索引访问,均支持单值访问或切片查询。...对象,功能与python中的普通map函数类似,即对给定序列中的每个值执行相同的映射操作,不同的是series中的map接口的映射方式既可以是一个函数,也可以是一个字典 ?...,要求每个df内部列名是唯一的,但两个df间可以重复,毕竟有相同列才有拼接的实际意义) merge,完全类似于SQL中的join语法,仅支持横向拼接,通过设置连接字段,实现对同一记录的不同列信息连接,支持
,但特殊的同时与普通的一维数组不同 列表只能有从0开始的整数索引,而series则可以自定义标签索引,这一点来看,跟字典又比较相似,因此series又可以拥有类似字典的操作方式,series 的标签索引可以随时更新修改替换...而DataFrame是一种表格型数据结构,它含有一组有序的列,每列可以是不同的值。DataFrame既有行索引,也有列索引,它可以看作是由Series组成的字典,不过这些Series公用一个索引。...2).参与运算的如果是两个DataFrame,有可能所有的行、列是一致的,那么运算时对应行列的位置进行相应的算术运算,若行列没有对齐,那么填值NaN。 3)....参与运算的两个DataFrame并非完全一样,即行列个数和行列名有可能都不同,那么有对应上的就做运算,无填充NaN。 5). 列方向也有相应的计算处理方式。...新的series保留原serie的values值,如果新的index和原series的index不同,则不同的填充NaN值,或者使用fill_value参数指定填充值。
当两个对象的列名不同时,即两个对象没有共同列时,也可以分别进行指定。 Left_on是指左侧DataFrame中用作连接的列。 right_on是指右侧DataFrame中用作连接的列。...2、索引上的合并 (1)普通索引的合并 Left_index表示将左侧的行索引引用做其连接键 right_index表示将右侧的行索引引用做其连接键 上面两个用于DataFrame中的连接键位于其索引中...对于重复的数据显示出相同的数据,而对于不同的数据显示a列表的数据。同时也可以使用combine_first的方法进行合并。...合并原则与where函数一致,遇到相同的数据显示相同数据,遇到不同的显示a列表数据。...(2)将‘长格式’旋转为‘宽格式’ 2、转换数据 (1)数据替换,将某一值或多个值用新的值进行代替。(比较常用的是缺失值或异常值处理,缺失值一般都用NULL、NAN标记,可以用新的值代替缺失标记值)。
Pandas库将外部数据转换为DataFrame数据格式,处理完成后再存储到相应的外部文件中。...,用半角逗号(’,’)作为字段值的分隔符。...=None, names=None, dtype) read_excel函数和read_table函数的部分参数相同。...二、合并数据 在实际的数据分析中,对同一分析对象,可能有不同的数据来源,因此,需要对数据进行合并处理。...combine_first()方法的语法格式: combine_first(other) 上述方法中只有一个参数other,该参数用于接收填充缺失值的DataFrame对象。
数据获取是数据预处理的第一步操作,主要是从不同的渠道中读取数据。...header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引,默认为0,即第一行数据作为列索引。...缺失值的常见处理方式有三种:删除缺失值、填充缺失值和插补缺失值,pandas中为每种处理方式均提供了相应的方法。...正态分布也称高斯分布,是统计学中十分重要的概率分布,它有两个比较重要的参数:μ和σ,其中μ是遵从正态分布的随机变量(值无法预先确定仅以一定的概率取值的变量)的均值,σ是此随机变量的标准差。...它们的区别是: df.join() 相同行索引的数据被合并在一起,因此拼接后的行数不会增加(可能会减少)、列数增加; df.merge()通过指定的列索引进行合并,行列都有可能增加;merge也可以指定行索引进行合并
二者与Python基本的数据结构List也很相近,其区别是:List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型,这样可以更有效的使用内存,提高运算效率。...DataFrame是二维的数据结构,其本质是Series的容器,因此,DataFrame可以包含一个索引以及与这些索引联合在一起的Series,由于一个Series中的数据类型是相同的,而不同Series...因此对于DataFrame来说,每一列的数据结构都是相同的,而不同的列之间则可以是不同的数据结构。...Series的字典形式创建的DataFrame相同,只是思路略有不同,一个是以列为单位构建,将所有记录的不同属性转化为多个Series,行标签冗余,另一个是以行为单位构建,将每条记录转化为一个字典,列标签冗余...df.groupby(['A','B']).sum()##按照A、B两列的值分组求和 对应R函数: tapply() 在实际应用中,先定义groups,然后再对不同的指标指定不同计算方式。
分别拖动目标字段到相应行列位置,设置统计函数为求和 ? 得到统计好的数据透视表结果 ?...至此,我们可以发现数据透视表中实际存在4个重要的设置项: 行字段 列字段 统计字段 统计方式(聚合函数) 值得指出的是,以上4个要素每一个都可以不唯一,例如可以拖动多个字段到行/列字段中形成二级索引,...也可完成对不同字段的统计,以及拖动相同字段设置不同统计方法实现多种聚合。...index : 用于放入透视表结果中的行索引列名 columns : 用于放入透视表结果中列索引列名 aggfunc : 聚合统计函数,可以是单个函数,也可以是函数列表,还可以是字典格式,默认聚合函数为均值...注意这里的缺失值是指透视后结果中可能存在的缺失值,而非透视前的原表中缺失值 margins : 指定是否加入汇总列,布尔值,默认为False,体现为Excel透视表中的行小计和列小计 margins_name
领取专属 10元无门槛券
手把手带您无忧上云