首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

业界 | 怎么把 GPU 上训练的模型转到 TPU 或者 CPU 上去?DeepMind 发布新工具支招

他们不经常亮相,但是这次由他们撰文介绍的 TF-Replicator 是一个极为有用的工具:它是又一个实用的软件库,可以帮助从未接触过分布式系统的研究人员们轻松地在 GPU 集群和云 TPU 集群上部署...TensorFlow 固然对 CPU、GPU、TPU 都提供了直接的支持,但是用户想要切换模型运行在哪个设备上却是一件很麻烦的事情。...不过 TensorFlow 原生的 TPU 计算 API 和 GPU 计算 API 有不少区别,这就为切换到 TPU 带来了不小障碍。...数据从主机 host 送入不同的 GPU 中并马上开始计算。当 GPU 之间需要交换信息的时候,它们会先同步再发送数据。...在此之后,每个线程都会继续构建它自己对应的设备的运算。然而,对这种方法进行仔细思考之后他们意识到 TF 中的图构建 API 并不是线程安全的,这意味着同步在不同的线程中构建不同的子图非常困难。

1.1K30

业界 | 怎么把 GPU 上训练的模型转到 TPU 或者 CPU 上去?DeepMind 发布新工具支招

他们不经常亮相,但是这次由他们撰文介绍的 TF-Replicator 是一个极为有用的工具:它是又一个实用的软件库,可以帮助从未接触过分布式系统的研究人员们轻松地在 GPU 集群和云 TPU 集群上部署...TensorFlow 固然对 CPU、GPU、TPU 都提供了直接的支持,但是用户想要切换模型运行在哪个设备上却是一件很麻烦的事情。...不过 TensorFlow 原生的 TPU 计算 API 和 GPU 计算 API 有不少区别,这就为切换到 TPU 带来了不小障碍。...数据从主机 host 送入不同的 GPU 中并马上开始计算。当 GPU 之间需要交换信息的时候,它们会先同步再发送数据。...在此之后,每个线程都会继续构建它自己对应的设备的运算。然而,对这种方法进行仔细思考之后他们意识到 TF 中的图构建 API 并不是线程安全的,这意味着同步在不同的线程中构建不同的子图非常困难。

71530
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在TPU上运行PyTorch的技巧总结

    TPU芯片介绍 Google定制的打机器学习专用晶片称之为TPU(Tensor Processing Unit),Google在其自家称,由于TPU专为机器学习所运行,得以较传统CPU、 GPU降低精度...但是Kaggle和谷歌在它的一些比赛中分发了免费的TPU时间,并且一个人不会简单地改变他最喜欢的框架,所以这是一个关于我在GCP上用TPU训练PyTorch模型的经验的备忘录(大部分是成功的)。 ?...https://github.com/pytorch/xla 设置 这里有两种方法可以获得TPU的使用权 GCP计算引擎虚拟机与预构建的PyTorch/XLA映像并按照PyTorch/XLA github...或者使用最简单的方法,使用google的colab笔记本可以获得免费的tpu使用。 针对一kaggle的比赛您可以在虚拟机上使用以下代码复制Kaggle API令牌并使用它下载竞争数据。...注意,在TPU节点上也有运行的软件版本。它必须匹配您在VM上使用的conda环境。由于PyTorch/XLA目前正在积极开发中,我使用最新的TPU版本: ? 使用TPU训练 让我们看看代码。

    2.8K10

    用机器学习构建O(N)复杂度的排序算法,可在GPU和TPU上加速计算

    但随着机器学习的兴起与大数据的应用,简单的排序方法要求在大规模场景中有更高的稳定性与效率。...中国科技大学和兰州大学等研究者提出了一种基于机器学习的排序算法,它能实现 O(N) 的时间复杂度,且可以在 GPU 和 TPU 上高效地实现并行计算。...这篇论文在 Reddit 上也有所争议,我们也希望机器学习能在更多的基础算法上展现出更优秀的性能。 排序,作为数据上的基础运算,从计算伊始就有着极大的吸引力。...除了高效并行计算之外,由于机器学习需要矩阵运算,它还适用于在 GPU 或 TPU 上工作以实现加速 [19]。 实验 如图 2 所示,我们选择两种分布进行实验:均匀分布和截尾正态分布。 ?...该排序算法可以应用到并行排序,且适用于 GPU 或 TPU 加速。此外,我们还将该算法应用到了稀疏哈希表上。

    79160

    了解机器学习深度学习常用的框架、工具

    此外,Pytorch 社区也在积极推动 XLA 在 Pytorch 下的开发,并已推出 PyTorch/XLA TPU 版本,但目前仅支持谷歌平台的 TPU 使用。...硬件加速:借助 XLA 技术,JAX 可以将代码编译到不同的硬件平台上(包括 CPU、GPU 和 TPU),从而实现显著的性能提升。...MXNet 的优点和不足 优点: 强大的分布式性能:MXNet 支持多种分布式训练模式,确保在多 GPU 和多节点资源上的高效利用。...此外,尽管 PyCaret 提供了许多常用的机器学习算法和预处理步骤,但对于一些特定的、非标准的算法或预处理方法,用户可能需要自行实现。...它能够实现在 GPU 上的低延迟、高吞吐量部署。TensorRT 的优化特点包括: 算子融合(网络层合并)。 Kernel 自动选择最合适的算法进行卷积运算。

    1.6K01

    pycaret之训练模型(创建模型、比较模型、微调模型)

    尽管有一个单独的函数可以对训练后的模型进行集成,但是在通过create_model函数中的ensemble参数和方法参数创建时,有一种快速的方法可以对模型进行集成。...xgboost_gpu = create_model('xgboost', tree_method = 'gpu_hist', gpu_id = 0) #0 is gpu-id # train multiple...xgboost_gpu = create_model('xgboost', tree_method = 'gpu_hist', gpu_id = 0) #0 is gpu-id # train multiple...PyCaret中的音调模型功能是对预定义搜索空间进行的随机网格搜索,因此它依赖于搜索空间的迭代次数。...默认情况下,此函数在搜索空间上执行10次随机迭代,可以使用tune_model中的n_iter参数进行更改。增加n_iter参数可能会增加训练时间,但通常会导致高度优化的模型。

    2.3K10

    傅里叶变换取代Transformer自注意力层,谷歌这项研究GPU上快7倍、TPU上快2倍

    机器之心报道 机器之心编辑部 来自谷歌的研究团队表明,将傅里叶变换取代 transformer 自监督子层,可以在 GLUE 基准测试中实现 92% 的准确率,在 GPU 上的训练时间快 7 倍,在 TPU...更令人惊讶的是,研究者发现采用标准的、非参数化的傅里叶变换替代自注意力子层,可以在 GLUE 基准测试中实现 92% 的 BERT 准确率,在 GPU 上的训练时间快 7 倍,在 TPU 上的训练时间快...的 BERT 准确率,在 GPU 上的训练时间快 7 倍,在 TPU 上的训练时间快 2 倍。...仅包含两个自注意子层的 FNet 混合模型在 GLUE 基准上可达到 97%的 BERT 准确率,但在 GPU 上的训练速度快近 6 倍,而在 TPU 上则是 2 倍。...由下表 3 可得,尽管线性模型和 FNet 训练的精确率略低,但它们明显快于 BERT——在 TPU 上大约快 2 倍,在 GPU 上大约快 7 倍。 ?

    45910

    教程 | 在Cloud ML Engine的TPU上从头训练ResNet

    本文作者将演示如何使用谷歌云提供的 TPU 在自己的数据集上训练一个最先进的图像分类模型。文中还包含了详细的教程目录和内容,心动的读者不妨跟着一起动手试试?...在斯坦福大学进行的独立测试中,在 TPU 上训练的 ResNet-50 模型能够在 ImageNet 数据集上以最快的速度(30 分钟)达到预期的准确率。...在本文中,我将带领读者使用谷歌云提供的 TPU 在自己的数据集上训练一个最先进的图像分类模型。并且: 无需自行编写 TensorFlow 代码(我已经完成了所有代码。)...自动放缩 TensorFlow 记录的创建 如果你希望在更新的数据上重新训练你的模型,只需要在新的数据上运行这整套流程,但是请确保将其写入到一个新的输出目录中,以免覆盖之前的输出结果。 6....训练模型 只需将训练任务提交到 Cloud ML Engine 上,让结果指向你的 Dataflow 作业的输出目录: #!

    1.8K20

    GaiaStack上的GPU虚拟化技术

    为什么需要GPU虚拟化 根据平台收集的GPU使用率的历史,我们发现独占卡的模式会对GPU这种宝贵计算资源存在浪费现象,即不同用户对模型的理解深度不同,导致申请了独立的卡却没有把资源用满的情况。...NVIDIA技术优缺点 NVIDIA GRID NVIDIA在vGPU技术上提供了2种模式,GPUpassthrough和Bare-Metal Deployment。...NVIDIA以上2种的共享方式都不支持根据用户申请的请求对GPU计算能力的时间分片特性,举个例子,A用户申请0.8个GPU的计算能力,B用户申请0.1个GPU的计算能力,2人都跑同样的应用程序,在NVIDIA...的技术方案里面,2个用户的GPU使用是0.5和0.5平均的使用方式,无法保证A用户GPU使用时间。...重新设计共享GPU方案 前面分别介绍了NVIDIA的2种共享GPU的技术的优缺点,那么有没有可能有一种新的方案,既能给容器平台提供共享,又能避免中心化代理GPU指令呢 由cgroup获得的启发 cgroup

    9.7K74

    C#的GPU加速方法

    本文将通过C#调用dll的方法来实现并发计算 Dll定义 在VS2019里新建动态链接库项目,在pch.h里定义函数 // pch.h: 这是预编译标头文件。...Stopwatch watch2 = new Stopwatch(); watch2.Start(); Sum(p, a, b, size); watch2.Stop(); Console.WriteLine("GPU...测试代码是计算4亿个数的和,可以看到GPU计算比CPU计算少了300毫秒,但是CPU在循环2亿次的情况下居然仅仅比GPU多了300毫秒,这是因为GPU无法从内存读取数据,需要把数据先复制到显存里才能计算...现实情况下,循环体里不可能只有一行代码,假设循环体里有10个语句,那么CPU的执行时间就会翻10倍,而GPU的执行时间也会翻10倍,但是由于主要耗时操作是数据的复制,所以实际增长不会特别明显。...现在GPU的优势就完全体现出来了

    1.6K10

    PyCaret | 几行代码搞定机器学习建模

    pycaret --display-name "pycaret-2.3.5" GPU 支持 以下模型支持使用 GPU 进行模型训练和超参数选择: •XGBoost•CatBoost•LightGBM(...需额外安装 GPU 版本:https://lightgbm.readthedocs.io/en/latest/GPU-Tutorial.html)•Logistic Regression, Ridge...如果要将 fold 从默认的 10 更改为其他值,则可以使用 fold 参数。例如 compare_models(fold = 5) 将在 5 折交叉验证的基础上比较所有模型,减少训练时间。...(tuned_rf, plot='feature') Confusion Matrix plot_model(tuned_rf, plot = 'confusion_matrix') 分析模型性能的另一种方法是使用...最终确定部署模型 这是建模的最后一步,完善最终模型,finalize_model() 函数将模型拟合到完整的数据集上,包括测试集中的样本。

    1.6K30

    华为虚拟化软件在GPU上的总结

    关于版本的注意事项: 1、GPU与服务器的兼容性。...A40比较新,在华为的服务器兼容部件里面没有查到,在超聚变的兼容部件里面可以查到。 图片 2、虚拟化软件与GPU之间的兼容性,以及推荐的GPU虚拟化软件版本。...GPU卡安装到服务器需要专门的GPU Raise卡,另外还需要采购GPU转接线,GPU装接线再连接到GPU Raise卡里自带的线,从而连接GPU卡与GPU Raise卡。...GPU---GPU装接线---GPU Raise卡转接线---GPU Raise卡。 图片 图片 另外电源的功率大一点,保证GPU的供电。...现在华为的虚拟化安装,可以先安装一台CNA,在通过CNA上安装一个安装软件,通过web界面,给其他服务器安装CNA,以及VRM,比之前在本地电脑上运行安装工具方便很多。

    3.1K60

    从CPU、GPU再到TPU,Google的AI芯片是如何一步步进化过来的?

    GPU诞生了 GPU全称为Graphics Processing Unit,中文为图形处理器,就如它的名字一样,GPU最初是用在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上运行绘图运算工作的微处理器...(CPU与GPU结构对比示意图 via:baike.baidu.com) 通过CPU与GPU结构上的对比我们可以看出,CPU功能模块很多,能适应复杂运算环境;GPU构成则相对简单,大部分晶体管主要用于构建控制电路...我们在TPU的板子上看到了插条,所以目前Google使用TPU的方式是将载有TPU的板子插在数据中心机柜的硬盘驱动器插槽里来使用。 而且我觉得TPU的高性能还来源于它数据的本地化。...对于GPU,从存储器中取指令与数据将耗费大量的时间,但是机器学习大部分时间并不需要从全局缓存中取数据,所以在结构上设计的更加本地化也加速了TPU的运行速度。...块GPU上。

    1.1K70

    开源 ∼600× fewer GPU days:在单个 GPU 上实现数据高效的多模态融合

    ,在单个 GPU 上实现数据高效的多模态融合 https://arxiv.org/abs/2312.10144 5.2 即插即用框架。...我们强调,由于我们的融合适配器是在低维潜在空间上运行的,因此训练它们的计算成本是最小的,尽管在单个GPU上训练,我们可以使用大批量大小(在我们的V100 GPU上高达B = 20K),已经被证明有利于对比学习...对于图像-文本检索,我们强调我们的方法非常有竞争力,有时能够胜过许多最先进的方法,这些方法训练了数量级更多的配对数据,并且需要比单个GPU更多的计算资源进行融合。...同样,对于音频-文本检索,我们在类似数据上训练的所有其他方法之上都取得了优异的表现,并且可以与使用数量级更多配对数据的方法竞争。 6.3....批量大小的影响。如第6.1节所述,由于训练我们的融合适配器需要极少的计算量,即使在单个GPU上也可以使用更大的批量大小。

    19210

    调包侠神器2.0发布,Python机器学习模型搭建只需要几行代码

    这款堪称「调包侠神器」的模型训练工具包,几行代码就能搞定模型编写、改进和微调。 从数据预处理到模型效果对比,PyCaret都能自动实现。 所以,PyCaret长啥样,2.0的版本又做了什么改进?...机器学习库的「炼丹炉」 PyCaret说白了,有点像一个机器学习库的炼丹炉。...(项目见传送门) PyCaret 2.0增强版 这是PyCaret 2.0的6大特色,有些在1.0就有了,有些功能如实验日志,看起来是更新后新加入的功能。 ? 实验日志,对于模型的调整不可或缺。...PyCaret 2.0加入了实验日志的功能,自动帮你跟踪模型实验过程中的各项指标,以及生成视觉效果等。 不仅如此,在2.0中,模型生成到预测的所有工作流程,现在可以被设计了。...以及,PyCaret 2.0现在几乎支持所有算法的并行处理,xgboost和catboost模型也支持GPU训练。 ? 除此之外,还有一些新的程序功能,等待你去发现。

    50220

    仅需15成本:TPU是如何超越GPU,成为深度学习首选处理器的

    选自Google Cloud 作者:Kaz Sato 机器之心编译 参与:思源、刘晓坤 很多读者可能分不清楚 CPU、GPU 和 TPU 之间的区别,因此 Google Cloud 将在这篇博客中简要介绍它们之间的区别...Cloud TPU 将 TPU 作为可扩展的云计算资源,并为所有在 Google Cloud 上运行尖端 ML 模型的开发者与数据科学家提供计算资源。...神经网络如何运算 在我们对比 CPU、GPU 和 TPU 之前,我们可以先了解到底机器学习或神经网络需要什么样的计算。如下所示,假设我们使用单层神经网络识别手写数字。 ?...这种 GPU 架构在有大量并行化的应用中工作得很好,例如在神经网络中的矩阵乘法。实际上,相比 CPU,GPU 在深度学习的典型训练工作负载中能实现高几个数量级的吞吐量。...因为 GPU 在其 ALU 上执行更多的并行计算,它也会成比例地耗费更多的能量来访问内存,同时也因为复杂的线路而增加 GPU 的物理空间占用。

    63300

    新版本tensorflow实现GPU加速的方法

    本文介绍在Anaconda环境中,配置可以用GPU运行的Python新版tensorflow库的方法。   ...在上一篇文章Anaconda配置CPU、GPU通用的tensorflow中,我们详细介绍了CPU、GPU通用的新版tensorflow库的配置方法;本文就在这一篇文章的基础之上,继续介绍如果希望让GPU...其中,如果大家的电脑上是没有GPU,或者就不需要用GPU加以计算,那就不用管这个问题,直接开始编写、运行机器学习的代码就好了;但是对于电脑中有GPU并且也希望让GPU加入运算的用户而言,就需要加以进一步的配置工作...1 系统版本要求   如果需要用本文所述的GPU环境配置方法,需要保证Windows操作系统的版本在19044及以上;如果不满足这一条件,除了升级系统,就只能通过早期版本的tensorflow库来实现GPU...import tensorflow as tf tf.test.is_gpu_available()   这也是一种检验GPU是否可用的方法,但是如下图所示,这种方法马上就要被淘汰了,因此建议还是用上面提到的方法来测试

    2.1K50

    几行代码搞定ML模型,低代码机器学习Python库正式开源

    PyCaret 库支持在「低代码」环境中训练和部署有监督以及无监督的机器学习模型,提升机器学习实验的效率。 ? 想提高机器学习实验的效率,把更多精力放在解决业务问题而不是写代码上?...PyCaret 库提供的六个模块。 接下来,我们就来了解一下 PyCaret 库的安装和使用方法吧。 启动 PyCaret 使用 pip 安装 PyCaret。...直接从 PyCaret 库中导入数据集的最简单方法是使用 pycaret.datasets 模块中的 get_data 函数。...训练好的模型对象的属性。 PyCaret 有 60 多个开源即用型算法。 模型调优 tune_model 函数用于自动调优机器学习模型的超参数。PyCaret 在预定义的搜索空间上使用随机网格搜索。...模型部署 我们可以使用以下方法让训练好的模型在未见过的数据集上生成预测:在训练模型的同一个 notebook 或 IDE 中使用 predict_model 函数。

    89540
    领券