首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图像处理之gamma校正

    在电视和图形监视器中,显像管发生的电子束及其生成的图像亮度并不是随显像管的输入电压线性变化,电子流与输入电压相比是按照指数曲线变化的,输入电压的指数要大于电子束的指数。这说明暗区的信号要比实际情况更暗,而亮区要比实际情况更高。所以,要重现摄像机拍摄的画面,电视和监视器必须进行伽玛补偿。这种伽玛校正也可以由摄像机完成。我们对整个电视系统进行伽玛补偿的目的,是使摄像机根据入射光亮度与显像管的亮度对称而产生的输出信号,所以应对图像信号引入一个相反的非线性失真,即与电视系统的伽玛曲线对应的摄像机伽玛曲线,它的值应为1/γ,我们称为摄像机的伽玛值。电视系统的伽玛值约为2.2,所以电视系统的摄像机非线性补偿伽玛值为0.45。彩色显像管的伽玛值为2.8,它的图像信号校正指数应为1/2.8=0.35,但由于显像管内外杂散光的影响,重现图像的对比度和饱和度均有所降低,所以彩色摄像机的伽玛值仍多采用0.45。在实际应用中,我们可以根据实际情况在一定范围内调整伽玛值,以获得最佳效果。

    01

    使用Numpy和Opencv完成图像的基本数据分析(Part III)

    本文是使用python进行图像基本处理系列的第三部分,在本人之前的文章里介绍了一些非常基本的图像分析操作,见文章《使用Numpy和Opencv完成图像的基本数据分析Part I》和《使用Numpy和Opencv完成图像的基本数据分析 Part II》,下面我们将继续介绍一些有关图像处理的好玩内容。 本文介绍的内容基本反映了我本人学习的图像处理课程中的内容,并不会加入任何工程项目中的图像处理内容,本文目的是尝试实现一些基本图像处理技术的基础知识,出于这个原因,本文继续使用 SciKit-Image,numpy数据包执行大多数的操作,此外,还会时不时的使用其他类型的工具库,比如图像处理中常用的OpenCV等: 本系列分为三个部分,分别为part I、part II以及part III。刚开始想把这个系列分成两个部分,但由于内容丰富且各种处理操作获得的结果是令人着迷,因此不得不把它分成三个部分。系列所有的源代码地址:GitHub-Image-Processing-Python。 在上一篇文章中,我们已经完成了以下一些基本操作。为了跟上今天的内容,回顾一下之前的基本操作:

    02

    GeroScience:tACS可改善主诉健忘老年人的记忆能力

    主观健忘(Subjective memory complaints,SMC)代表认知成分中的事件记忆出现问题,是老年人阿尔茨海默病的预测因子。本试验的目的是在双盲、随机和假对照的平行实验下,研究经颅交流电刺激(tACS)于内侧前额叶皮层(mPFC)对SMC患者情景记忆改善的效果。16名SMC参与者在mPFC上接受了主动或假的theta tACS治疗。记录脑电图,并进行Rey听觉语言学习测试(RAVLT)。通过RAVLT测量,tACS可显著改善情景记忆表现。与假手术组相比,脑电图数据显示主动tACS导致theta功率下降;中央后、脑岛和扣带回的theta, alpha和gamma电流源密度(CSD)下降;theta和gamma相位同步减少。此外,RAVLT延迟回忆评分与theta频带的左下回CSD之间存在显著相关性。本研究结果显示,mPFC的theta tACS可以通过调节大脑额叶和颞叶区域的活动来改善SMC患者的事件记忆,因此可以被认为是治疗健忘的潜在干预手段。

    01
    领券