首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Google Cloud Machine Learning Engine找不到用于本地执行的trainer模块

Google Cloud Machine Learning Engine是Google Cloud提供的一种托管式机器学习平台,用于训练和部署机器学习模型。它提供了一个可扩展的基础架构,使开发人员能够轻松地构建和部署自己的机器学习模型。

在使用Google Cloud Machine Learning Engine时,如果找不到用于本地执行的trainer模块,可能有以下几个原因:

  1. 未正确安装和配置Google Cloud SDK:Google Cloud SDK是与Google Cloud平台进行交互的命令行工具集。确保已正确安装和配置Google Cloud SDK,并使用正确的项目ID进行身份验证。
  2. trainer模块未正确部署到Google Cloud Storage:trainer模块是用于训练机器学习模型的代码。确保trainer模块已正确上传到Google Cloud Storage,并且在训练作业中指定了正确的路径。
  3. 训练作业的参数设置有误:在启动训练作业时,需要指定trainer模块的位置、输入数据的位置、输出模型的位置等参数。确保这些参数的设置是正确的,并与实际情况相符。
  4. 训练作业的环境配置有误:Google Cloud Machine Learning Engine支持使用自定义的训练环境。如果使用了自定义的训练环境,确保环境配置正确,并且trainer模块能够在该环境中正确执行。

如果以上步骤都已经检查并确认无误,但仍然找不到用于本地执行的trainer模块,建议查阅Google Cloud Machine Learning Engine的官方文档,或者咨询Google Cloud的技术支持团队,以获取进一步的帮助和指导。

推荐的腾讯云相关产品:腾讯云机器学习平台(Tencent Machine Learning Platform,TCMLP),它提供了类似于Google Cloud Machine Learning Engine的托管式机器学习平台,可用于训练和部署机器学习模型。您可以通过以下链接了解更多信息:https://cloud.tencent.com/product/tcmlp

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 《Scikit-Learn、Keras与TensorFlow机器学习实用指南(第二版)》第19章 规模化训练和部署TensorFlow模型

    有了能做出惊人预测的模型之后,要做什么呢?当然是部署生产了。这只要用模型运行一批数据就成,可能需要写一个脚本让模型每夜都跑着。但是,现实通常会更复杂。系统基础组件都可能需要这个模型用于实时数据,这种情况需要将模型包装成网络服务:这样的话,任何组件都可以通过REST API询问模型。随着时间的推移,你需要用新数据重新训练模型,更新生产版本。必须处理好模型版本,平稳地过渡到新版本,碰到问题的话需要回滚,也许要并行运行多个版本做AB测试。如果产品很成功,你的服务可能每秒会有大量查询,系统必须提升负载能力。提升负载能力的方法之一,是使用TF Serving,通过自己的硬件或通过云服务,比如Google Cloud API平台。TF Serving能高效服务化模型,优雅处理模型过渡,等等。如果使用云平台,还能获得其它功能,比如强大的监督工具。

    02

    GEE,ISPRS,2020

    The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) is the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). The Journal provides a channel of communication for scientists and professionals in all countries working in the many disciplines that employ photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The Journal is designed to serve as a source reference and archive of advancements in these disciplines. The P&RS objective is to publish high quality, peer-reviewed, preferably previously unpublished papers of a scientific/research, technological development or application/practical nature. P&RS will publish papers, including those based on ISPRS meeting presentations*, which are regarded as significant contributions in the above-mentioned fields. We especially encourage papers: of broad scientific interest; on innovative applications, particularly in new fields; of an interdisciplinary nature; on topics that have not been dealt with (or to a small degree) by P&RS or related journals; and on topics related to new possible scientific/professional directions. Preferably, theoretical papers should include applications, and papers dealing with systems and applications should include theoretical background. The scope of the journal is extensive and covers sensors, theory and algorithms, systems, experiments, developments and applications. Topics of interest include but are not limited to: Sensors: • Airborne and spaceborne multispectral and hyperspectral imaging systems • Airborne and terrestrial cameras • Airborne, terrestrial and mobile laser scanning • Range imaging • Active and passive imaging sensor characterisation • Sensor calibration and standardisation • Geosensor networks • Internet of Things Methods and procedures: • Spatial data handling technologies • Integrated sensor calibration and orientation • Surface and object reconstruction, modelling and interpretation • GIS data modelling, representation and structur

    01
    领券